
8/20/2006 Transactional memory1

Agenda

Multithreaded Programming

Transactional Memory (TM)

� TM Introduction

� TM Implementation Overview

� Hardware TM Techniques

� Software TM Techniques

Q&A

Ali-Reza Adl-Tabatabai
Programming Systems Lab

Intel Corporation

Transactional Memory Introduction

8/20/2006 Transactional memory3

Transactional memory definition

Memory transaction: A sequence of memory operations that
either execute completely (commit) or have no effect (abort)

An “all or nothing” sequence of operations

� On commit, all memory operations appear to take effect as a
unit (all at once)

� On abort, none of the stores appear to take effect

Transactions run in isolation

� Effects of stores are not visible until transaction commits

� No concurrent conflicting accesses by other transactions

Similar to database ACID properties

8/20/2006 Transactional memory4

Transactional memory language construct

The basic atomic construct:

lock(L); x++; unlock(L); atomic {x++;}

Declarative – user simply specifies, system implements “under the
hood”

Basic atomic construct universally proposed

– HPCS languages (Fortress, X10, Chapel) provide atomic in lieu of locks

– Research extensions to languages – Java, C#, Atomos, CaML, Haskell, …

Lots of recent research activity

– Transactional memory language constructs

– Compiling & optimizing atomic

– Hardware & software implementations of transactional memory

8/20/2006 Transactional memory5

Example: Java 1.4 HashMap

Fundamental data structure

� Map: Key → Value

public Object get(Object key) {

int idx = hash(key); // Compute hash

HashEntry e = buckets[idx]; // to find bucket

while (e != null) { // Find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

Not thread safe: don’t pay lock overhead if you don’t need it

8/20/2006 Transactional memory6

Synchronized HashMap

Java 1.4 solution: Synchronized layer
� Convert any map to thread-safe variant

� Explicit locking – user specifies concurrency

public Object get(Object key)
{

synchronized (mutex) // mutex guards all accesses to map m
{
return m.get(key);

}
}

Coarse-grain synchronized HashMap:
� Thread-safe, easy to program

� Limits concurrency poor scalability
– E.g., 2 threads can’t access disjoint hashtable elements

8/20/2006 Transactional memory7

Transactional HashMap

Transactional layer via an ‘atomic’ construct
� Ensure all operations are atomic

� Implicit atomic directive – system discovers concurrency

public Object get(Object key)
{

atomic // System guarantees atomicity
{
return m.get(key);

}
}

Transactional HashMap:
� Thread-safe, easy to program

� Good scalability

8/20/2006 Transactional memory8

Transactions: Scalability

Concurrent read operations

– Basic locks do not permit multiple readers

� Reader-writer locks

– Transactions automatically allow multiple concurrent
readers

Concurrent access to disjoint data

– Programmers have to manually perform fine-grain locking

� Difficult and error prone

� Not modular

– Transactions automatically provide fine-grain locking

8/20/2006 Transactional memory9

ConcurrentHashMap

public Object get(Object key) {

int hash = hash(key);

// Try first without locking...

Entry[] tab = table;

int index = hash & (tab.length - 1);

Entry first = tab[index];

Entry e;

for (e = first; e != null; e = e.next) {

if (e.hash == hash && eq(key, e.key)) {

Object value = e.value;

if (value != null)

return value;

else

break;

}

}

…

…

// Recheck under synch if key not there or interference

Segment seg = segments[hash & SEGMENT_MASK];

synchronized(seg) {

tab = table;

index = hash & (tab.length - 1);

Entry newFirst = tab[index];

if (e != null || first != newFirst) {

for (e = newFirst; e != null; e = e.next) {

if (e.hash == hash && eq(key, e.key))

return e.value;

}

}

return null;

}

}

Java 5 solution: Complete redesign

Fine-grain locking & concurrent reads: complicated & error prone

8/20/2006 Transactional memory10

HashMap performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16

Threads

T
im

e
 (

s
)

 Synch (coarse) Synch (fine) Atomic

Transactions scales as well as fine-grained locks

8/20/2006 Transactional memory11

Transactional memory benefits

As easy to use as coarse-grain locks

Scale as well as fine-grain locks

Composition:

� Safe & scalable composition of software modules

8/20/2006 Transactional memory12

Example: A bank application

Bank accounts with names and balances
� HashMap is natural fit as building block

class Bank {

ConcurrentHashMap accounts;

…

void deposit(String name, int amount) {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

…

}

Not thread-safe – Even with ConcurrentHashMap

8/20/2006 Transactional memory13

Thread safety

Suppose Fred has $100

T0: deposit(“Fred”, 10)

� bal = acc.get(“Fred”) <- 100

� bal = bal + 10

� acc.put(“Fred”, bal) -> 110

Fred has $120. $10 lost.

T1: deposit(“Fred”, 20)

� bal = acc.get(“Fred”) <- 100

� bal = bal + 20

� acc.put(“Fred”, bal) -> 120

8/20/2006 Transactional memory14

Traditional solution: Locks

class Bank {

ConcurrentHashMap accounts;

…

void deposit(String name, int amount) {

synchronized(accounts) {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

}

…

}

Thread-safe – but no scaling
� ConcurrentHashMap does not help

� Performance requires redesign from scratch & fine-grain locking

8/20/2006 Transactional memory15

Transactional solution

class Bank {

HashMap accounts;

…

void deposit(String name, int amount) {

atomic {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

}

…

}

Thread-safe – and it scales!

Safe composition + performance

8/20/2006 Transactional memory16

Transactional memory benefits

As easy to use as coarse-grain locks

Scale as well as fine-grain locks

Safe and scalable composition

Failure atomicity:

� Automatic recovery on errors

8/20/2006 Transactional memory17

Traditional exception handling

class Bank {

Accounts accounts;

…

void transfer(String name1, String name2, int amount) {

synchronized(accounts) {

try {

accounts.put(name1, accounts.get(name1)-amount);

accounts.put(name2, accounts.get(name2)+amount);

}

catch (Exception1) {..}

catch (Exception2) {..}

}

…

}

Manually catch all exceptions and determine what needs
to be undone

Side effects may be visible to other threads before they
are undone

8/20/2006 Transactional memory18

Failure recovery using transactions

class Bank {

Accounts accounts;

…

void transfer(String name1, String name2, int amount) {

atomic {

accounts.put(name1, accounts.get(name1)-amount);

accounts.put(name2, accounts.get(name2)+amount);

}

}

…

}

System rolls back updates on an exception

Partial updates not visible to other threads

8/20/2006 Transactional memory19

Challenges in parallel programming

Finding independent tasks

Mapping tasks to threads

Defining & implementing
synchronization protocol

Race conditions

Deadlock avoidance

Memory model

Composing parallel tasks

Scalability

Portable & predictable
performance

Recovering from errors

... Single thread issues

Transactions address a lot of parallel programming problems

8/20/2006 Transactional memory20

Challenges in parallel programming

Finding independent tasks

Mapping tasks to threads

Defining & implementing
synchronization protocol

Race conditions

Deadlock avoidance

Memory model

Composing parallel tasks

Scalability

Portable & predictable
performance

Recovering from errors

... Single thread issues

But not a silver bullet

8/20/2006 Transactional memory21

Summary

Transactions provide many benefits over locks
– Automatic fine-grain concurrency

– Automatic read concurrency

– Deadlock avoidance

– Eliminates locking protocols

– Automatic failure recovery

Safe & scalable composition of thread-safe
software modules

Challenge: How to implement transactions
efficiently?

