
Multithreaded Programming
Challenges, current practice, and
languages/tools support

Yuan Lin
Systems Group

Sun Microsystems

HOT-CHIPS 2006 2

Multi-core Architectures

• What?
> A chip contains some number of "cores", each of which

can run some number of strands (“hardware threads").
> Different cores or chips may share caches at different

levels. All caches are coherent.
> All strands have access to the same shared memory.

• Why?
> More and more difficult to get good ROI by improving

single-core performance only.
> Design complexity, power consumption, heat production, ...

> Throughput is as important as speed.

HOT-CHIPS 2006 3

Multi-core Architectures

• 2 strand/core, 1 core/chip
> Intel Pentium 4 with Hyperthreading

• 1 strand/core, 2 cores/chip
> Intel Dual Core Xeon, AMD Dual Core Opteron,

Sun UltraSPARC IV

• 2 strand/core, 2 cores/chip
> IBM Power 5

• 4 strand/core, 8 cores/chip
> Sun UltraSPARC T1

HOT-CHIPS 2006 4

Example: UltraSPARC T1

• Eight cores (individual execution pipelines) per chip.

• Four strands share a pipeline in each core.

• Different strands are scheduled on the pipeline in round-
robin order.

• The slot of a stalled strand is given to the next strand.

• Four strands on a core share L1 cache, all strands share L2
cache.

• A single FPU is shared by all cores.

• OS sees the each strand as a processor. OS schedules
LWPs on strands. HW schedules strands in the core.

HOT-CHIPS 2006 5

Class of Applications

• Multi-process applications
> e.g. Oracle database, SAP, PeopleSoft, ...

• Multi-threaded applications
> e.g. Siebel CRM, Sybase engine, ...

• Single-threaded applications
> Cannot be directly benefitted from multi-core

architectures
> Solution: make it multi-threaded or multi-process

HOT-CHIPS 2006 6

Multithreaded Programming

• Are developers ready now?
> Language developers
> Compiler / tool developers
> Library / runtime developers
> OS / VM developers
> Application developers

• What are the challenges?

HOT-CHIPS 2006 7

• Multi-core Architectures

• Brief Overview of Pthreads, OpenMP and
Java

• The Challenges

Topics

HOT-CHIPS 2006 8

• Multi-core Architectures

• Brief Overview of Pthreads, OpenMP and
Java

• The Challenges

Topics

HOT-CHIPS 2006 9

Current Popular Parallel Programming
Languages and APIs
• Shared Memory

> Memory is “shared” unless declared “private”.
> Accessing shared memory by direct read or write.
> Examples: Pthreads, OpenMP, Java, C#
> Closer to multi-core architectures than the rest two.

• Global Address Space
> Memory is “private” unless declared “shared”.
> Accessing shared memory by direct read or write.
> Examples: UPC, Co-array Fortran

• Message Passing
> No shared memory. Exchange data via messages.
> Example: MPI

HOT-CHIPS 2006 10

Current Popular Parallel Programming
Languages and APIs
• Shared Memory

> Memory is “shared” unless declared “private”.
> Accessing shared memory by direct read or write.
> Examples: Pthreads, OpenMP, Java, C#
> Closer to multi-core architectures than the rest two.

• Global Address Space
> Memory is “private” unless declared “shared”.
> Accessing shared memory by direct read or write.
> Examples: UPC, Co-array Fortran

• Message Passing
> No shared memory. Exchange data via messages.
> Example: MPI

HOT-CHIPS 2006 11

POSIX Threads (Pthreads)

• IEEE POSIX 1003.1c-1995 standard:
A standardized C language thread API
> thread creation and termination
> synchronization
> scheduling
> data management
> process interaction

• Now incorporated into Single UNIX Specification,
Version 3.
> barriers, read/write locks, spin locks, etc.

HOT-CHIPS 2006 12

Pthreads – a simple example
g = g + compute(1) + compute(2)

HOT-CHIPS 2006 13

Pthreads – a simple example
g = g + compute(1) + compute(2)

main()
{
 pthread_t tid;
 void *status;
 int part;

 part = 1;
 pthread_create(&tid, NULL, work, (void *)part);

 part = 2;
 work((void *)part);

 pthread_join(tid, &status);
}

HOT-CHIPS 2006 14

Pthreads – a simple example
g = g + compute(1) + compute(2)

main()
{
 pthread_t tid;
 void *status;
 int part;

 part = 1 ;
 pthread_create (&tid, NULL, work , (void *) part);

 part = 2 ;
 work ((void *) part);

 pthread_join (tid, &status);
}

thread1

thread2

work() work()

HOT-CHIPS 2006 15

Pthreads – a simple example
g = g + compute(1) + compute(2)

void *work(void *arg)
{
 int result = compute ((int)arg);
 pthread_mutex_lock (&lock);
 g += result ;
 pthread_mutex_unlock (&lock);
 return NULL;
}

main()
{
 pthread_t tid;
 void *status;
 int part;

 part = 1;
 pthread_create(&tid, NULL, work, (void *)part);

 part = 2;
 work((void *)part);

 pthread_join(tid, &status);
}

HOT-CHIPS 2006 16

Pthreads – a simple example

main()
{
 pthread_t tid;
 void *status;
 int part;

 part = 1 ;
 pthread_create (&tid, NULL, work , (void *) part);

 part = 2 ;
 work ((void *) part);

 pthread_join (tid, &status);
}

work() work()

thread1

thread2

• Understand Concurrency

HOT-CHIPS 2006 17

Pthreads – a simple example

main()
{
 pthread_t tid;
 void *status;
 int part;

 part = 1 ;
 pthread_create (&tid, NULL, work , (void *) part);

 part = 2 ;
 work ((void *) part);

 pthread_join (tid, &status);
}

work() work()

thread1

thread2

?

• Understand Concurrency: what is the status of thread 2
when pthread_create() returns?
> a) thread 2 has not started executing work().
> b) thread 2 is executing work().
> c) thread 2 has done work() and returned from work().

HOT-CHIPS 2006 18

Pthreads – a simple example

main()
{
 pthread_t tid;
 void *status;
 int part;

 part = 1 ;
 pthread_create (&tid, NULL, work , (void *) part);

 part = 2 ;
 work ((void *) part);

 pthread_join (tid, &status);
}

work() work()

thread1

thread2

?

• Understand Concurrency: what is the status of thread 2
when pthread_create() returns?
> a) thread 2 has not started executing work().
> b) thread 2 is executing work().
> c) thread 2 has done work() and returned from work().

 Could be any of the three!

HOT-CHIPS 2006 19

The Beauty of Pthreads

• Comprehensive Set of Functions and Specifications
> Thread management
> Synchronizations
> Scheduling
> Data management
> Interaction with process, signals, ...

✔ Flexible
✔ Building block of higher level runtime

HOT-CHIPS 2006 20

OpenMP

• An API specification for writing shared memory parallel
programs in C, C++ and Fortran

• Consists of:
> Compiler directives
> Runtime routines
> Environment variables

• Specification maintained by the OpenMP Architecture
Review Board http://www.openmp.org

• Latest Specification: Version 2.5

• Language committee meetings for V3.0: since 9/2005

http://www.openmp.org/

HOT-CHIPS 2006 21

Thread Execution Model: fork and join

Master Thread

Worker ThreadsParallel region

Parallel region Worker Threads

join

fork

join

fork

HOT-CHIPS 2006 22

g = g + compute(1) + compute(2)

OpenMP – a simple example

for (int i=1; i<=2; i++) {
 int result;

 result = compute(i);
 g += result;
}

HOT-CHIPS 2006 23

g = g + compute(1) + compute(2)

OpenMP – a simple example

#pragma omp parallel for reduction(+:g)
for (int i=1; i<=2; i++) {
 int result;

 result = compute(i);
 g += result;
}

HOT-CHIPS 2006 24

The Beauty of OpenMP

• Possible to write a sequential program and its
“functionally-equivalent” parallel version in the same
code.

✔ makes debugging easier
✔ allows incremental parallelization

#pragma omp parallel for reduction(+:g)
for (int i=1; i<=2; i++) {
 int result;

 result = compute(i);
 g += result;
}

HOT-CHIPS 2006 25

Java (J2SE)

• Basic threading support in the original spec
> new Thread(), Object.wait, notify, notifyAll, synchronized

• Threading related updates for J2SE5
> JSR-133: java memory model
> JSR-166: java.util.concurrent package

> Task scheduling framework

> Concurrent collections

> Atomic variables

> Synchronizers (e.g. barriers, semaphores, latches, ...)

> Locks

> Timing

HOT-CHIPS 2006 26

Java – a simple example

g = g + compute(1) + compute(2)

 public void go() {
 Thread t[];
 t = new Thread[2];
 id = 1;
 for (i=0; i<2; i++) {
 t[i] = new Thread (this);
 t[i]. start ();
 }
 for (i=0; i<2; i++) {
 try {
 t[i]. join ();
 }
 catch(InterruptedException iex){}
 }
 }
 }

import java.util.concurrent.atomic.* ;
public class A implement Runnable {
 private int g;
 private AtomicInteger id = new AtomicInteger(0);
 ...
 public void run () {
 int myid, myg;
 myid = id. incrementAndGet ()
 myg = compute(myid);
 synchronized (this) {
 g += myg;
 }
 }

HOT-CHIPS 2006 27

Java – a simple example

g = g + compute(1) + compute(2)

 public void go() {
 Thread t[];
 t = new Thread[2];
 id = 1;
 for (i=0; i<2; i++) {
 t[i] = new Thread (this);
 t[i]. start ();
 }
 for (i=0; i<2; i++) {
 try {
 t[i]. join ();
 }
 catch(InterruptedException iex){}
 }
 }
 }

import java.util.concurrent.atomic.* ;
public class A implement Runnable {
 private int g;
 private AtomicInteger id = new AtomicInteger(0);
 ...
 public void run () {
 int myid, myg;
 myid = id. incrementAndGet ()
 myg = compute(myid);
 synchronized (this) {
 g += myg;
 }
 }

thread creation
start, and join

HOT-CHIPS 2006 28

Java – a simple example

g = g + compute(1) + compute(2)

 public void go() {
 Thread t[];
 t = new Thread[2];
 id = 1;
 for (i=0; i<2; i++) {
 t[i] = new Thread (this);
 t[i]. start ();
 }
 for (i=0; i<2; i++) {
 try {
 t[i]. join ();
 }
 catch(InterruptedException iex){}
 }
 }
 }

import java.util.concurrent.atomic.* ;
public class A implement Runnable {
 private int g;
 private AtomicInteger id = new AtomicInteger(0);
 ...
 public void run () {
 int myid, myg;
 myid = id. incrementAndGet ()
 myg = compute(myid);
 synchronized (this) {
 g += myg;
 }
 }

atomic variables

HOT-CHIPS 2006 29

Java – a simple example

g = g + compute(1) + compute(2)

 public void go() {
 Thread t[];
 t = new Thread[2];
 id = 1;
 for (i=0; i<2; i++) {
 t[i] = new Thread (this);
 t[i]. start ();
 }
 for (i=0; i<2; i++) {
 try {
 t[i]. join ();
 }
 catch(InterruptedException iex){}
 }
 }
 }

import java.util.concurrent.atomic.* ;
public class A implement Runnable {
 private int g;
 private AtomicInteger id = new AtomicInteger(0);
 ...
 public void run () {
 int myid, myg;
 myid = id. incrementAndGet ()
 myg = compute(myid);
 synchronized (this) {
 g += myg;
 }
 }

synchronized block

HOT-CHIPS 2006 30

The Beauty of Java

• A well studied and specified memory model.

• A set of easy to use, reliable, and performant
concurrency utilities with many commonly used data
structures.

HOT-CHIPS 2006 31

• Multi-core Architectures

• Brief Overview of Pthreads, OpenMP and
Java

• The Challenges

Topics

HOT-CHIPS 2006 32

Challenges in Multithreaded Programming

1.Finding and creating concurrent tasks
2.Mapping tasks to threads
3.Defining and implementing synchronization protocols
4.Dealing with race conditions
5.Dealing with deadlocks
6.Dealing with memory model
7.Composing parallel tasks
8.Achieving scalability
9.Achieving portable & predictable performance
10.Recovering from errors
11. Dealing with all single thread issues

HOT-CHIPS 2006 33

For Each Challenge

• What is it?

• How do programmers deal with it now?

• Any help from Pthreads, OpenMP or Java?

• Any tools that can help now?

 P/O/JP/O/J

HOT-CHIPS 2006 34

Find and Create Concurrent Tasks

• Concurrency at Data Level
> e.g. 6 crying babies waiting for diaper-change

• Concurrency at Function Level
> e.g. changing diaper for a baby, complaining to the

spouse, while playing sudoku in mind

• Granularity

1

HOT-CHIPS 2006 35

Automatic Parallelization

• Available in many compilers
> SGI, Sun, Intel, IBM, ...

• Long history

• Mostly loop based parallelization

• Limited adoption

> f90 -xautopar old-serial.f

HOT-CHIPS 2006 36

Parallelization Assistance Tool

• ParaWise from Parallel Software Products, Inc.
> a semi-automatic parallelization tool for Fortran

programs
> Long history
> Limited

 adoption

Screenshots from http://www.parallelsp.com/parawise.htm

HOT-CHIPS 2006 37

Parallelization Assistance Tool

• A valuable tool may not need to be fancy.

• Dieter an Mey (RWTH, Aachen University) :
> “I consider the following a very valuable assistance tool: a

tool that can find all the places in the source code where
global variables are declared and all the places where the
global variables are referenced, and show these places
with a different color.”

> “I got the functionality from the Foresys tool from Simulog
for Fortran and I found it quite useful. It would be nice to
have such features in an IDE. ”

HOT-CHIPS 2006 38

Find and Create Concurrent Tasks

• Pthread
> No direct support.

• Java
> No direct support.
> The use of Executor/Thread Pools makes the concept of

task explicit. (See details later.)

 P/O/JP/O/J

HOT-CHIPS 2006 39

Find and Create Concurrent Tasks

• OpenMP
> Use worksharing loops for basic data level parallelism

> Use worksharing sections for basic function level
parallelism

#pragma omp for
for (i=1; i<n; i++)
 work(data[i]);

#pragma omp sections
{
 #pragma omp section
 func1();
 #pragma omp section
 func2();
}

 P/O/JP/O/J

HOT-CHIPS 2006 40

Tasks and Threads Mapping

• Threads vs Tasks
> Thread: parallel execution engines provided by the OS
> Tasks: concurrency unit in program logic

• A program can have tens of thousands of
concurrent tasks.
> e.g. players in a game server, components in a

simulation system, requests in a web server

• The system can only supply hundreds of threads.
> e.g. because of resource limitation

• There is overhead associated with creating and
destroying threads.

2

HOT-CHIPS 2006 41

Tasks and Threads Mapping

• Use well-designed data structures to hold task state.

• Deploy a task-to-thread model to deliver scalable and
predictable performance.
> master/slave

> Master thread dispatches slave threads from a thread-pool to work
on tasks. The threads in the pool are pre-allocated.

> pipeline
> Each thread performs a specific operation on a data item, and

passes the data to the next thread in the pipeline.

> task pool
> Each thread execute a task from a pool and put new task

generated to the pool.

> ...

HOT-CHIPS 2006 42

Tasks and Threads Mapping

• Pthreads : No direct support

• OpenMP :
> Basic master/slave model

> Three loop scheduling methods
> Static

> Dynamic

> Guided

Master Thread

Parallel region

Worker Threads

16 iterations, 4 threads

 P/O/JP/O/J

HOT-CHIPS 2006 43

Tasks and Threads Mapping

• Java
> Thread pool utilities in J2SE5 provide pre-built thread

mechanism to run tasks to a bounded number of
threads.

> To use thread pool,
> instantiate an implementation of the ExecutorService

interface and hand it a set of tasks, or

> use configurable implementations: ThreadPoolExecutor and
ScheduledThreadPoolExecutor

> Use Callable and Future interfaces to get result from
tasks.

 P/O/JP/O/J

HOT-CHIPS 2006 44

 class NetworkService {
 private final ServerSocket serverSocket;
 private final ExecutorService pool ;

 public NetworkService(int port, int poolSize) t hrows IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool (poolSize);
 }
 public void serve() {
 try {
 for (;;) {
 pool.execute (new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown ();
 }
 }
 }
 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request
 }
 }
 http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

HOT-CHIPS 2006 45

Task class

Thread pool

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

 class NetworkService {
 private final ServerSocket serverSocket;
 private final ExecutorService pool ;

 public NetworkService(int port, int poolSize) t hrows IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool (poolSize);
 }
 public void serve() {
 try {
 for (;;) {
 pool.execute (new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown ();
 }
 }
 }
 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request
 }
 }

HOT-CHIPS 2006 46

Create thread pool

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

 class NetworkService {
 private final ServerSocket serverSocket;
 private final ExecutorService pool ;

 public NetworkService(int port, int poolSize) t hrows IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool (poolSize);
 }
 public void serve() {
 try {
 for (;;) {
 pool.execute (new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown ();
 }
 }
 }
 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request
 }
 }

HOT-CHIPS 2006 47

Generate new tasks

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

 class NetworkService {
 private final ServerSocket serverSocket;
 private final ExecutorService pool ;

 public NetworkService(int port, int poolSize) t hrows IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool (poolSize);
 }
 public void serve() {
 try {
 for (;;) {
 pool.execute (new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown ();
 }
 }
 }
 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request
 }
 }

HOT-CHIPS 2006 48

Assign task to thread pool

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

 class NetworkService {
 private final ServerSocket serverSocket;
 private final ExecutorService pool ;

 public NetworkService(int port, int poolSize) t hrows IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool (poolSize);
 }
 public void serve() {
 try {
 for (;;) {
 pool.execute (new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown ();
 }
 }
 }
 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request
 }
 }

HOT-CHIPS 2006 49

Shutdown thread pool

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

 class NetworkService {
 private final ServerSocket serverSocket;
 private final ExecutorService pool ;

 public NetworkService(int port, int poolSize) t hrows IOException {
 serverSocket = new ServerSocket(port);
 pool = Executors.newFixedThreadPool (poolSize);
 }
 public void serve() {
 try {
 for (;;) {
 pool.execute (new Handler(serverSocket.accept()));
 }
 } catch (IOException ex) {
 pool.shutdown ();
 }
 }
 }
 class Handler implements Runnable {
 private final Socket socket;
 Handler(Socket socket) { this.socket = socket; }
 public void run() {
 // read and service request
 }
 }

HOT-CHIPS 2006 50

Defining and Implementing
Synchronizations

• Understand the application logic and design the
high-level synchronization scheme
> e.g. traffic light

• Use the right synchronization primitives at the right
place.
> e.g. need to coordinate threads so they are executed in

phases
> use condition variables?

> use barriers?

> join threads and create new threads?

3

HOT-CHIPS 2006 51

Defining and Implementing
Synchronizations

• Pthreads:
> Mutex locks, condition variables, semaphores, barriers,

reader-writer locks

• OpenMP:
> Locks, barriers, critical sections, ordered regions

• Java
> Synchronized method/block, wait/notify
> Condition variables, semaphores, barriers, countdown

latch, exchanger, reader-writer locks

 P/O/JP/O/J

HOT-CHIPS 2006 52

Race Conditions

• Race conditions occur when different threads
access shared data without explicit synchronization.

• Race conditions can cause programs to behave in
ways unexpected by the programmer.

• Bugs caused by race conditions are notoriously
difficult to debug.

4

HOT-CHIPS 2006 53

Race Conditions – An Example

Thread 1:

a = a + 5;

lock (a_lock);
 b = b + 10;
unlock (a_lock);

barrier();

Thread 2:

lock (a_lock);
 b = b - 10;
unlock (a_lock);

a = a – 5;

barrier();

Assume a = b = 0;

What's the value of 'a' and 'b' after the barrier?

HOT-CHIPS 2006 54

Race Conditions – An Example

Assume a = b = 0;

We have a = 0 and b = 0.

Thread 1:

a = a + 5;

lock (a_lock);
 b = b + 10;
unlock (a_lock);

barrier();

Thread 2:

lock (a_lock);
 b = b - 10;
unlock (a_lock);

a = a – 5;

barrier();

HOT-CHIPS 2006 55

Race Conditions – An Example

Assume a = b = 0;

'b' is 0.
'a' may be 0, 5, or -5.

Thread 1:

a = a + 5;

lock (a_lock);
 b = b + 10;
unlock (a_lock);

barrier();

Thread 2:

lock (a_lock);
 b = b - 10;
unlock (a_lock);

a = a – 5;

barrier();

HOT-CHIPS 2006 56

Two Kinds of Race Conditions (1/2)

• Data Race
> Concurrent accesses (at least one is a write) to shared

memory are not protected by critical sections. Atomicity
of the accesses is lost.

Thread 1 Thread 2
lock();
acnt1 = acnt1 + delta_x;
acnt2 = acnt2 – delta_x;
unlock();

lock();
acnt1 = acnt1 + delta_y;
acnt2 = acnt2 – delta_y;
unlock();

HOT-CHIPS 2006 57

Two Kinds of Race Conditions (2/2)

• General Race
> The order of accesses to shared memory is not enforced

by synchronization.

Thread 1 Thread 2

put_job_in_queue(job)
post();

wait();
job = get_job_from_queue();

HOT-CHIPS 2006 58

Data Race vs General Race

• A data race is also a general race.

• A data race can be fixed by using critical sections or
adding synchronizations.

• A general race can be fixed by adding
synchronizations to enforce ordering.

• Watch out for general races when the shared-
memory accesses should occur in specific order.

• Watch out for data races in asynchronous
programs.

• Tools are available to detect data races.

HOT-CHIPS 2006 59

Data Race Detection Tools

• Static Detection
> + Can be fast and consume little memory.
> + Does not affect the behavior of program.
> + Is not affected by input data and scheduling
> + Can be used to check OS kernels and device drivers
> - False positives

• Example: LockLint from Sun Studio
> Reports data races and deadlocks due to inconsistent

use of locking techniques.
> Originates from WARLOCK, which was designed to

detect such errors in Solaris kernels and device drivers.

HOT-CHIPS 2006 60

Data Race Detection Tools

• Runtime Detection

• Examples:
> Helgrind from Valgrind
> HP Visual Threads
> Intel Thread Checker
> Sun Data Race Detection Tool

HOT-CHIPS 2006 61

Data Race Detection Tools

HOT-CHIPS 2006 62

What to Do After a Data-race is Found?

• 1) Check whether it is a false positive.
> A false positive is a reported data race that actually does

not exist in the program.
> No tool is perfect.
> For example, the tool may not understand the

synchronizations in your program.

HOT-CHIPS 2006 63

What to Do After a Data-race is Found?

• 1) Check whether it is a false positive.
> A false positive is a reported data race that actually does

not exist in the program.
> No tool is perfect.
> For example, the tool may not understand the

synchronizations in your program.

• 2) Check whether it is a benign race.
> The programmer may put data race there in order to get

better performance.
> Yes? Are you sure? Check again!

> Programs with intentional data races are very difficult to
get right.
> Are you relying on sequential consistency?

HOT-CHIPS 2006 64

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!

HOT-CHIPS 2006 65

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.

HOT-CHIPS 2006 66

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.

int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void*),
 void *arg);

HOT-CHIPS 2006 67

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.

int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void*),
 void *arg);

void *work(void *arg)
{
 int myid = *(int *)arg;
 data[myid] = update(data[myid]);
 return NULL;
}

for (i=0; i<THREADS; i++)
 pthread_create(tids[i], NULL, work, &i);

HOT-CHIPS 2006 68

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.

int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void*),
 void *arg);

void *work(void *arg)
{
 int myid = *(int *)arg;
 data[myid] = update(data[myid]);
 return NULL;
}

for (i=0; i<THREADS; i++)
 pthread_create(tids[i], NULL, work, &i);

Data race reported

Bug!

HOT-CHIPS 2006 69

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.
> Most tools detect certain kind of data races only!

Data Race! Accounts are not balanced!
“account1 + account2” is not constant.

acnt1 += x;

acnt2 -= x;

acnt1 += y;

acnt2 -= y;

print acnt1, acnt2

thread 1 thread 2 thread 3

HOT-CHIPS 2006 70

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.
> Most tools detect certain kind of data races only!

A wrong fix. No data race is reported.
But accounts are not balanced at certain stages!
“account1 + account2” is not constant.

lock();
acnt1 += x;
unlock();
lock();
acnt2 -= x;
unlock();

lock();
acnt1 += y;
unlock();
lock();
acnt2 -= y;
unlock();

lock();
print acnt1, acnt2
unlock();

thread 1 thread 2 thread 3

HOT-CHIPS 2006 71

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.
> Most tools detect certain kind of data races only!

A correct fix.

lock();
acnt1 += x;

acnt2 -= x;
unlock();

lock();
acnt1 += y;

acnt2 -= y;
unlock();

lock();
print acnt1, acnt2
unlock();

thread 1 thread 2 thread 3

HOT-CHIPS 2006 72

What to Do After a Data-race is Found?

• 3) Fix the bug, not the data race!
> A data race could be a bug or caused by a bug.
> Most tools detect certain kind of data races only!

• 4) Run the detection tool again after code change!
> A tool may not be able to detect all data races by design.
> The code change may introduce or reveal another data

race.

HOT-CHIPS 2006 73

Making Global Variables Private

• Pthreads: thread specific data
> pthread_key_create() , pthread_key_delete()

> pthread_setspecific() , pthread_getspecific()

• OpenMP: “threadprivate” directive
int total_for_this_thread;

#pragma omp threadprivate (total_for_this_thread)

• Java: java.lang.ThreadLocal class
> private static ThreadLocal<int> totoal_for_this_thread;

• Thread Local Storage
> Provided by compiler and runtime linker
__thread int total_for_this_thread;

HOT-CHIPS 2006 74

• Four levels of MT safe attributes for library interfaces.

• 1) Unsafe
> Contains global and static data that are not protected. User

should make sure only one thread at time to execute the call.

 Unsafe Function Reentrant counterpart
 ctime ctime_r
 localtime localtime_r
 asctime asctime_r
 gmtime gmtime_r
 ctermid ctermid_r
 getlogin getlogin_r
 rand rand_r
 readdir readdir_r
 strtok strtok_r
 tmpnam tmpnam_r

Use MT-Safe Routines

HOT-CHIPS 2006 75

• 2) Safe
> Global and static data are protected. Might not provide

any concurrency between calls made by different
threads.

> Example: malloc in libc(3c)

• 3) MT-Safe
> Safe and can provide a reasonable amount of

concurrency.
> Example: malloc in libmtmalloc(3LIB).

Use MT-Safe Routines

HOT-CHIPS 2006 76

• 4) Async-signal-safe
> Can be safely called from a signal handler.
> Example:

> Not async-signal-safe: malloc(), pthread_getspecific()

> Async-signal-safe: open(), read()

Use MT-Safe Routines

HOT-CHIPS 2006 77

Deadlocks

• Two or more competing actions are waiting for the
other to finish. None can finish.

• A common misunderstanding: a deadlock must
involve mutex locks.
> Deadlocks may be caused by mis-use of

synchronizations or communications, such as barriers.

• Livelock
> Two or more competing actions continually change their

state in response to changes in the other actions. None
will finish.

5

HOT-CHIPS 2006 78

Necessary Conditions for a Deadlock

1.Mutual exclusion: a resource is exclusively owned
by the process to which it is assigned.

2.Hold and wait: processes request new resources
while holding some resources.

3.No preemption: only the process holding a resource
can release it.

4.Circular wait: there is a circular chain of processes
in which each process waits for a resource that the
next process in the chain holds.

HOT-CHIPS 2006 79

Deadlock: Prevention and Avoidance

• Prevention
> Use protocols to ensure at least one of the four

conditions does not hold.
> Example: enforce lock hierarchy to ensure circular-wait

never happens.

• Avoidance
> Use global resource information to decide whether the

current request can be satisfied or delayed.
> Example: Banker's algorithm

HOT-CHIPS 2006 80

Deadlock: Prevention and Avoidance

• It may be easy to apply the text book rules to
deadlocks that involve obvious resources.

• In many applications, the four conditions are subtle,
especially when the deadlock is caused by
communication.

• Always examine the program logic!

HOT-CHIPS 2006 81

Deadlocks: Example 1

thread 1:

 Lock(a);

 Lock(b);

thread 2:

 Lock(b);

 Lock(c);

thread 3:

 Lock(c);

 Lock(a);

The program may or may
not deadlock in a particular run.

HOT-CHIPS 2006 82

Deadlocks: Example 2

thread tid1:

 pthread_join(tid2, NULL);

thread tid2:

 pthread_join(tid1, NULL);

HOT-CHIPS 2006 83

Deadlocks: Example 3

#pragma omp parallel num_threads(4)

{

 if (omp_thread_num()<3) {

 #pragma omp barrier

 }

 else {

 #pragma omp barrier

 }

} Illegal OpenMP program!

HOT-CHIPS 2006 84

Deadlocks: Example 4

 int flag = 0;

thread t1: while (!flag);

 pthread_exit(0);

thread t2: flag = 1;

 pthread_join(t1, NULL);

May loop forever.

HOT-CHIPS 2006 85

Deadlocks: Example 4

thread t1: while (!flag);

 pthread_exit(0);

May loop forever.

reg = flag;
if (!reg) {
 while (1);
}
pthread_exit(0);

Compiler optimization

HOT-CHIPS 2006 86

Deadlocks

• Pthreads
> Some error checking on locks, but not deadlocks.

> If the mutex type is PTHREAD_MUTEX_ERRORCHECK and a
thread attempts to relock a mutex that it has already locked, an
error will be returned.

> If the mutex type is PTHREAD_MUTEX_ERRORCHECK and a
thread attempts to unlock a mutex that it has not locked or a
mutex which is unlocked, an error will be returned.

• OpenMP
> Makes one kind of deadlock illegal.

> Barriers in a parallel region must be encountered by all threads
in the team in the same order.

 P/O/JP/O/J

HOT-CHIPS 2006 87

Deadlocks

• Java
> Structured synchronized method/block makes the critical

regions clearer than unstructured locks.
> Locks associated with synchronized keyword are always

released when the thread leaves (due to exception or
not) the synchronized scope.
> This automatic-releasing could be a bad thing for error recovery

since it may leave the data in an inconsistent state that is not
protected by locks.

 P/O/JP/O/J

HOT-CHIPS 2006 88

Deadlock Detection Tools

• Static Checking
> LockLint from Sun

• Runtime Checking
> Thread Checker from Intel
> OpenMP Runtime Error Detection from Sun

> setenv SUNW_MP_WARN TRUE
> a.out
WARNING (libmtsk): Threads at barrier from differen t directives.
 Thread at barrier from init.c:12.
 Thread at barrier from forbidden.c:17.
 Possible Reasons:
 Worksharing constructs not encountered by all th reads in the
 team in the same order.
 Incorrect placement of barrier directives.

HOT-CHIPS 2006 89

Memory Consistency Model

• The order in which memory operations will appear
to be executed to a programmer.

• What affects the memory consistency?
> Language
> Compiler
> Hardware

6

HOT-CHIPS 2006 90

Example: Lazy Initialization

A *init_single_A()
{
 static A *single_A;
 if (single_A == NULL) {
 single_A = malloc(sizeof(A));
 single_A->data1 = ...;
 ...
 }
 return single_A;
}

• The Sequential Version

typedef struct
{
 int data1;
 int data2;
 ...
} A;

It does not work in mt applications.

HOT-CHIPS 2006 91

Example: Lazy Initialization

• Multi-threaded Versions

A *init_single_A()
{
 static A *single_A;
 lock();
 if (single_A == NULL) {
 single_A = malloc(sizeof(A));
 single_A->data1 = ...;
 ...
 }
 unlock();
 return single_A;
}

HOT-CHIPS 2006 92

Example: Lazy Initialization

• Multi-threaded Versions

A *init_single_A()
{
 static A *single_A;
 A *temp = single_A;
 if (temp == NULL) {
 lock();
 if (single_A == NULL) {
 temp = malloc(sizeof(A));
 temp->data1 = ...;
 ...
 single_A = temp;
 }

 unlock();
 }
 return temp;
}

Not efficient

A *init_single_A()
{
 static A *single_A;
 lock();
 if (single_A == NULL) {
 single_A = malloc(sizeof(A));
 single_A->data1 = ...;
 ...
 }
 unlock();
 return single_A;
}

HOT-CHIPS 2006 93

Example: Lazy Initialization

• Multi-threaded Versions

A *init_single_A()
{
 static A *single_A;
 A *temp = single_A;
 if (temp == NULL) {
 lock();
 if (single_A == NULL) {
 temp = malloc(sizeof(A));
 temp->data1 = ...;
 ...
 single_A = temp;
 }

 unlock();
 }
 return temp;
}

“Double-checked Locking”

May be broken
Not efficient

A *init_single_A()
{
 static A *single_A;
 lock();
 if (single_A == NULL) {
 single_A = malloc(sizeof(A));
 single_A->data1 = ...;
 ...
 }
 unlock();
 return single_A;
}

HOT-CHIPS 2006 94

Double-checked Locking

A *init_single_A()
{
 static A *single_A;
 A *temp = single_A;
 if (temp == NULL) {
 lock();
 if (single_A == NULL) {
 temp = malloc(sizeof(A));
 temp->data1 = ...;
 ...

 single_A = temp;
 }

 unlock();
 }
 return temp;
}

> The compiler may reorder these
two writes.

> Even if the compiler does not
reorder them, a thread on
another processor may perceive
the two writes in a different order.

> Therefore, a thread on another
processor may read wrong value
of single_A->data1.

A *p = init_single_A();
... = p->data1;

HOT-CHIPS 2006 95

Double-checked Locking

A *init_single_A()
{
 static A *single_A;
 A *temp = single_A;
 if (temp == NULL) {
 lock();
 if (single_A == NULL) {
 temp = malloc(sizeof(A));
 temp->data1 = ...;
 ...
 memory_barrier();
 single_A = temp;
 }

 unlock();
 }
 return temp;
}

> A possible fix.

> Still broken on some
architectures, e.g. Alpha.

HOT-CHIPS 2006 96

Memory Consistency Model

• Pthreads
> No formal specification
> Shared accesses must be synchronized by calling

pthread synchronization functions.

• C++/C
> Assumes single thread program execution.
> “volatile” restricts compiler optimization, but it does not

address the memory consistency issue.
> Memory model for multithreaded C++ is being worked

on.

 P/O/JP/O/J

HOT-CHIPS 2006 97

Memory Consistency Model

• OpenMP
> Detailed clarification. No formal specification.
> Each thread has a temporary view of shared memory.
> A flush operation restricts the ordering of memory

operations and synchronizes a thread's temporary view
with shared memory.

> All threads must observe any two flush operations with
overlapping variable lists in sequential order.

 P/O/JP/O/J

HOT-CHIPS 2006 98

Memory Consistency Model

• Java: revised and clarified by JSR-133
> Volatile variables
> Final variables
> Immutable objects (objects whose fields are only set in

their constructor)
> Thread- and memory-related JVM functionality and APIs

such as class initialization, asynchronous exceptions,
finalizers, thread interrupts, and the sleep, wait, and join
methods of class Thread

 P/O/JP/O/J

HOT-CHIPS 2006 99

Memory Consistency Model

• Avoid writing codes that have deliberate data races.
It is tricky and difficult to understand and debug.

HOT-CHIPS 2006 100

Composing Parallel Tasks

• Modular design is common in software development.

• How to compose modules that are multi-threaded?

• Three models of composition
> Sequential composition
> Parallel composition
> Nested composition

7

HOT-CHIPS 2006 101

Composition: sequential vs parallel

A F1 B F2 C

• Sequential composition:

> n threads for F1 and n threads for F2

• Parallel composition:

> n1 threads for F1 and n2 threads for F2, n1+n2=n

A1 F1 B1 F2 C1

A2 F1 B2 F2 C2

A3 F1 B3 F2 C3

HOT-CHIPS 2006 102

Composition: sequential vs parallel

A F1 B F2 C

• Sequential composition:

> n threads for F1 and n threads for F2

• Parallel composition:

> n1 threads for F1 and n2 threads for F2, n1+n2=n

A1 F1 B1 F2 C1

A2 F1 B2 F2 C2

A3 F1 B3 F2 C3

 + may improve resource utilization
 by overlapping F1 and F2
 - may introduce extra communication,
 data migration, or thread migration

HOT-CHIPS 2006 103

Nested Composition

• Straight-forward approach: outer-module and inner
module create their own threads.
> Threads explosion.

• More complicated approach: outer-module and inner
module get threads from the same thread pool.
> Need a common threading frame work.
> Implies API interface change or external global state

• Locks are not composable in general!
> Dead locks

F1

F2 n1 thread for F1 and n2 threads for F2, n1*n2 = n

HOT-CHIPS 2006 104

Composing Parallel Tasks

• Pthreads and Java: No direct support

• OpenMP:
> Support nested composition of parallel tasks through

nested parallel regions.

> Inflexible and possible low utilization of threads

#omp parallel for
for (i=0; i<n; i++) {
 #omp parallel for
 for (j=0; j<m; j++) {
 ...
 }
}

 P/O/JP/O/J

HOT-CHIPS 2006 105

Scalability

8

• Performance does not scale with the number of
threads used.

• Common reason 1: system oversubscribed
> e.g. 16 hardware threads, 32 software threads

• Common reason 2: not enough concurrency
> Amdahl's law

• Common reason 3: lock contention
> Frequent locking, unlocking activities
> Long lock holding time

HOT-CHIPS 2006 106

plockstat(1M)

• A utility in Solaris 10 that gathers and displays
user-level locking statistics.

• Uses plockstat DTrace provider.

• Three types of lock events can be traced.
> Contention events - probes for user level lock contention
> Hold events - probes for lock acquiring, releasing etc.
> Error events - error conditions.

HOT-CHIPS 2006 107

plockstat(1M) - example

>plockstat ./a.out

Mutex block

Count nsec Lock Caller
--- ----------------------------
 863 3822626 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c
 900 3423154 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
 340 2969890 a.out`mutex a.out`_ $p1A12.main+0x30
15835 2894962 a.out`mutex a.out`_ $p1A12.main+0x30
 415 2456968 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
 296 2208085 a.out`mutex a.out`_ $p1A12.main+0x30
 441 2129956 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c
14032 2054952 a.out`mutex a.out`_ $p1A12.main+0x30
 4 42900 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc
 1 14800 libc.so.1`_uberdata libmtsk .so.1`threads_fini+0x174

HOT-CHIPS 2006 108

plockstat(1M) - example

 a.out`mutex libc_malloc_lock

>plockstat ./a.out

Mutex block

Count nsec Lock Caller
--- ----------------------------
 863 3822626 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c
 900 3423154 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
 340 2969890 a.out`mutex a.out`_ $p1A12.main+0x30
15835 2894962 a.out`mutex a.out`_ $p1A12.main+0x30
 415 2456968 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
 296 2208085 a.out`mutex a.out`_ $p1A12.main+0x30
 441 2129956 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c
14032 2054952 a.out`mutex a.out`_ $p1A12.main+0x30
 4 42900 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc
 1 14800 libc.so.1`_uberdata libmtsk .so.1`threads_fini+0x174

HOT-CHIPS 2006 109

plockstat(1M) - example

Mutex spin

Count nsec Lock Caller
--- ----------------------------
 4225 13553 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
72525 13518 a.out`mutex a.out`_ $p1A12.main+0x30
 1711 13399 a.out`mutex a.out`_ $p1A12.main+0x30
 7 11600 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc
 8111 10778 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c

Mutex unsuccessful spin

Count nsec Lock Caller
--- ----------------------------
 1315 31766 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
 636 31008 a.out`mutex a.out`_ $p1A12.main+0x30
29867 30875 a.out`mutex a.out`_ $p1A12.main+0x30
 31 30590 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc
 1304 29273 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c
 7 26320 libc.so.1`_uberdata libmtsk .so.1`threads_fini+0x174
 19 24328 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc

(plockstat output cont.)

HOT-CHIPS 2006 110

plockstat(1M) - example

Mutex spin

Count nsec Lock Caller
--- ----------------------------
 4225 13553 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
72525 13518 a.out`mutex a.out`_ $p1A12.main+0x30
 1711 13399 a.out`mutex a.out`_ $p1A12.main+0x30
 7 11600 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc
 8111 10778 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c

Mutex unsuccessful spin

Count nsec Lock Caller
--- ----------------------------
 1315 31766 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x20
 636 31008 a.out`mutex a.out`_ $p1A12.main+0x30
29867 30875 a.out`mutex a.out`_ $p1A12.main+0x30
 31 30590 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc
 1304 29273 libc.so.1`libc_malloc_lock a.out`_ $p1A12.main+0x5c
 7 26320 libc.so.1`_uberdata libmtsk .so.1`threads_fini+0x174
 19 24328 libc.so.1`_uberdata libc.so .1`_thr_exit_common+0xbc

(plockstat output cont.)

 a.out`mutex libc_malloc_lock

HOT-CHIPS 2006 111

plockstat(1M) - example

• libc.so.1`libc_malloc_lock
> Use libmtmalloc or libumem

• a.out`mutex
> Resize the critical sections

> scope

> lock holding time

> Replace critical sections with atomic operations

HOT-CHIPS 2006 112

Atomic Operations

• atomic_ops
> atomic_ops package from HP
> atomic_ops(3c), available on Solaris 10

atomic_add_16(), atomic_or_32(), atomic_add_32_nv(), ...

• OpenMP: “atomic” directive
#pragma omp atomic

a++;

• Java: atomic variable classes
> Nine flavors of atomic variables.

HOT-CHIPS 2006 113

Portable & Predictable Performance

• Use the same program on different platforms and
achieve consistent performance.

• Ideal: performance is determined only by the
algorithm used.

• What affects performance?
> Algorithm > Compiler
> Runtime (VM) > OS > HW

9

HOT-CHIPS 2006 114

Performance Analysis Tools

• Sun Studio Performance Analyzer

• Intel Vtune and Thread Profiler

• Quest Software JProbe

• Borland Optimizeit

• ...

• OS level tools: dtrace, mpstat, lockstat, ...

HOT-CHIPS 2006 115

Sun Studio Performance Analyzer

• General purpose application level profiler

• Post-mortem analysis

• MT aware

• Supports dynamic libraries

• Clock profiling

• Hardware counter profiling

• Support for OpenMP

HOT-CHIPS 2006 116

Sun Studio Performance Analyzer

•
 An experiment with JVM

Single threaded Java application. JVM is multi-threaded.

HOT-CHIPS 2006 117

Sun Studio Performance Analyzer

•
 An experiment with JVM

This thread executes user application.

HOT-CHIPS 2006 118

Sun Studio Performance Analyzer
 An experiment with JVM

This thread does garbage collection.

HOT-CHIPS 2006 119

Sun Studio Performance Analyzer
 An experiment with JVM

This thread does JIT compilation.

HOT-CHIPS 2006 120

Performance Tools: A Challenge

• Be aware of the threading model and provide
relevant information.
> Identify tasks, in addition to threads
> Provide state information at different abstraction levels
> Goals

> Identify serial bottlenecks

>Help resolve load imbalances

HOT-CHIPS 2006 121

Sun Studio Performance Analyzer

 An OpenMP Experiment

HOT-CHIPS 2006 122

Sun Studio Performance Analyzer

User-CPU time for all threads
is the same.
But that does not mean the
OpenMP workload for the
threads is balanced.

 An OpenMP Experiment

HOT-CHIPS 2006 123

Sun Studio Performance Analyzer

The OMP Work metrics shows
the load is not balanced.

 An OpenMP Experiment

HOT-CHIPS 2006 124

Sun Studio Performance Analyzer

OMP Work

 An OpenMP Experiment

HOT-CHIPS 2006 125

Error Recovery

• Catch the errors and restore the application to a
stable state.

• Error recovery becomes more difficult in mt
applications because it may be an asynchronous
problem!
> Notify other threads

> Who? How? When?

> Update global structures
> Deadlocks or infinite loops in recovering process!

• A common approach: use check points

10

HOT-CHIPS 2006 126

All Single Thread Issues

• “50% chance a bug has nothing to do with multi-
threading. It is just 200x difficult to debug in a multi-
thread program”.

• Referencing un-initialized memory

• Out-of-bound array accesses

• Dereferencing a stale pointer

• ...

• Tools: Lint, Purify, Valgrind, dbx rtc, ...

11

HOT-CHIPS 2006 127

MT- capable debuggers

• Basic Features
> Examing the thread states
> Examing thread specific data
> Setting breakpoints for a specific thread
> Control the execution of the threads

• Advanced Features
> Integrated with deadlock/data race detection tools
> Examing synchronization status
> Be aware of threading model

• Tools
> Dbx from Sun, TotalView from Etnus, GDB, ...

HOT-CHIPS 2006 128

dbx – Examine Status

• Print a list of all known threads
> (dbx) threads
o t@1 a l@1 ?() breakpoint in work()
*>t@2 a l@2 work() breakpoint in work()
 t@3 a l@3 work() running in _thr_setup()

• Switch the viewing context to another thread
> (dbx) thread t@3

HOT-CHIPS 2006 129

dbx – Set Breakpoints

• A break point can be set specifically to a particular
thread.
> (dbx) stop at 430 -thread t@2

• Breaking is synchronous - “stop the world”
> When any thread stops, all other threads sympathetically

stop.

HOT-CHIPS 2006 130

dbx - Control Execution

• Keep the given thread from ever running
> (dbx) thread -suspend t@2

• Resume a thread
> (dbx) thread -resume t@2

• Single step a thread
> (dbx) step t@2
> (dbx) next t@2

HOT-CHIPS 2006 131

Summary

• Multi-core architecture provides a new thread-rich
environment.

• Challenges in multi-threaded programming need to
be addressed at all levels.
> languages
> compilers and tools
> libraries and utilities
> VM and OS
> programming practice

HOT-CHIPS 2006 132

To Learn More ...

• Pthread
> “Programming with POSIX Threads”, David Butenhof

• OpenMP
> www.openmp.org

• Java
> “Java Concurrency in Practice”, Brian Goetz et al
> JSR-133

> http://www.cs.umd.edu/~pugh/java/memoryModel/

> JSR-166
> http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

http://www.openmp.org/

HOT-CHIPS 2006 133

To Learn More ...

• “Developing and Tuning Applications on UltraSPARC
T1 Chip Multithreading Systems”, Denis Sheahan
> http://www.sun.com/blueprints/1205/819-5144.html

• Dtrace
> http://www.sun.com/bigadmin/content/dtrace/

• Threading Methodolgy: Principles and Practices
> http://www.intel.com/cd/software/products/asmo-na/eng/threading/219349.htm

• Using the Sun Studio Data-Race Detection Tool
> http://developers.sun.com/prodtech/cc/downloads/drdt/using.html

http://www.sun.com/blueprints/1205/819-5144.html
http://www.sun.com/bigadmin/content/dtrace/
http://www.intel.com/cd/software/products/asmo-na/eng/threading/219349.htm

Thank you!

yuan.lin@sun.com

