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The Power Problem
� Power consumption is a primary limiter in 

today�s processors and unfortunately, it 

varies a lot

� Part to part 

(processing)

� As a result of 

the application

� Due to 

temperature
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The Power Problem
� Power consumption is a primary limiter in 

today�s processors and unfortunately, it 

varies a lot

� Part to part 

(processing)

� As a result of 

the application

� Due to 

temperature
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Current Approaches to Power 

Management and Reduction

� Split out the thermal power spec from the max electrical 
power spec
� Use �Thermal Design Power� (TDP) to spec a sustained power 

that is lower than the true maximum (�electrical power�)

� Counts on the rarity of very high power events 

� Relies on a thermal sensor to throttle the part if it�s too hot

� Allows a lower cost thermal solution, but power supplies and 
power delivery must still handle the max electrical power

� Dynamic Voltage Scaling (C states/P states)
� Conserve energy when the processor is under-utilized to reduce 

average power

� Fuse in a Vcc that is part-specific
� Higher power but faster parts can use a lower voltage at the 

same frequency
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The Ideal Power Management for 

Servers and Desktop

� We currently over-design our power supplies 
and thermal solutions for worst case parts and 
applications

� Most of the time the part isn�t fully using the 
watts we�ve allocated for it
� Lower power applications only run as fast as the 

highest power ones

!We want to maximize performance / Watt for all 
situations

!We want a processor to adapt operating point 
dynamically to it�s situation

This is what Foxton Technology does



6

What is Foxton?

� An integrated system that dynamically 

maximizes performance per watt including

� Accurate, integrated power measurement

� Integrated temperature measurement

� Frequency control to maximize hertz/volt

� A microcontroller to incorporate instantaneous 

{power, temperature, voltage, frequency} and 

optimize the operating point

� The result is processor cores doing their 

computation at optimal power efficiency
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High Level View of System
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Power Consumption Contour
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Measuring Power

� Use package resistance to measure power

� Avoids burning extra power in measurement

� Portable, self-contained solution
� No dependence on external power supply

VConnector
VDie

RPackage
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Temperature 

Measurement

� Calibrate the voltage drop at test to TJ target (90C)

� Use the known -1.7mV per degree C temperature 
coefficient to calculate die temperature

� Measure the voltage drop across the diodes every 20ms

Power

Supply

A/D

Converters

Micro

Controller

Die

VFixed

VThermal
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Package Resistance Calibration

� Package resistance can be computed with two 
voltage measurements with processor stalled
� Pulling quiescent current I0
� Pulling I0 + a precision, on-die generated current IDelta

� On-package precision R for consistent IDelta

� 66ms recalibration rate

I0 I0+IDelta

Vc2-Vd2

Vc1-Vd1

R Pack
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( ) ( )
Delta
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Frequency vs. Power Limit

Measured Data
Core 0, Core 1, Avg Frequency vs. PLimit
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Managing Frequency

� Voltage variability costs frequency and hence 
performance/watt

� A clock system that can track rapid voltage 
changes will both maximize hertz/volt and 
provide smooth response to micro-controller 
induced voltage changes

Vcc(t)

F(V(t))

Favg(t)

Fmin(t)
Old FMAX

New 

FMAX

Today: Minimum Vcc(t) determines maximum 

frequency.

Foxton: Average Vcc(t) determines average 

frequency.
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A Variable Frequency Clock System
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Montecito Clock System Floorplan
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Clock System Modes

� Fixed Frequency (FFM)
� Cores/Uncore are frequency and phase aligned

� Cores/Uncore interfaces synchronous

� Variable Frequency (VFM)
� Core supply modulated by Foxton Controller to 

manage power envelope

� Core frequencies track Vcore via Regional 
Voltage Detector (RVD) V-F curves

� Respond to Foxton modulation and local transients

� V-F curves match worst-scaling paths on chip

� Core/Uncore interfaces asynchronous
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RVD Delay Line
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Example VFC Supply Droop Response
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Speed gains from Adaptive Frequency

Speed Gain From VFC
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Summary

� Foxton is a system comprised of several key 
components
� Accurate power and temperature measurement 

� Fine grained voltage control

� Dynamic fast-response frequency control

� A micro-controller to manage the system

� It can be wrapped around any processor or 
ASIC which can be virtually unchanged except:
� An asynchronous interface to the rest of the system

� Must support a wider range of operating voltages

� The result is a self-optimizing chip dynamically 
delivering greatly improved performance/watt


