TwinCastle: A Multi-processor North Bridge Server Chipset

Debendra Das Sharma, Ashish Gupta, Gordon Kurpanek, Dean Mulla, Bob Pflederer, Ram Rajamani

Advanced Components Division, Intel Corporation

Agenda

- Twin Castle Platform Overview
- Speeds and Feeds
- Twincastle Feature Set
- Twincastle North Bridge (TNB) Microarchitecture
- TNB Chip Statistics
- Summary

TwinCastle Overview

- Multiprocessor Platform: up to 4 CPUs
 - Support for multi-core CPUs.
- Platform support for multiple processor upgrades
 - Cranford, Potomac
 - Dual Core: Tulsa, Paxville
- Two chips: Twin Castle North bridge (TNB), and External Memory Bridge (XMB)
- Intel's x86 based MP chipset
 - Leadership technology such as PCI-E*, and IMI
 - Leadership RAS features

TNB Interconnects

- Two Front-side Buses to connect to CPUs
 - Capable of delivering 5.3 GB/sec per bus
 - Stream MP Triad: 4.35 GB/sec (read) and 5.8 GB/sec (read/ write combined)
 - Measured I/O system bandwidth: 5.02 GB/sec
 - Measurement is about 95% of theoretical
- Four IMI links
 - Each IMI connects to an XMB (memory)
 - Memory: DDR 266/ 333, DDR II 400 (up to 32 DIMMs)
 - Aggregate B/W: 21.33 GB/sec inbound , 10.67 GB/sec outbound
- I/O: Up to seven PCI-Express* links (28 lanes)
 - Aggregate B/W: 6.2 GB/sec inbound, 6.2 GB/sec outbound
 - Available with "no snoop" attribute (FSB b/w not bottleneck)
- Hub Interface (HI) to connect to ICH (south bridge)
 - 266 MB/sec of aggregate bandwidth
- Internal data path can sustain 42 GB/sec of data b/w

Twin Castle Block Diagram

Processor

Potomac

Processor

2x2 FSB 667MHz

XMB XMB 5.33 GB/s 2.67 GB/ 2.67 GB/ IMI GB/s **PCI Express* links** 3 x8 and 1 x4 config 2GB/s bidir Twin Castle North Bridge 2GB/s bidir 2GB/s bidir 1GB/s bidir 2.67 GB/s 266 MB/s 5.33 GB/s GB/s ICH-5 HI 1.5 IMI

DDR 266 2.13 GB/s/channel **DDR 333** 2.66

GB/s/channel or

DDR2 400

3.2GB/s/channel

© Copyright 2005, Intel Corporation. All rights reserved. *Third party marks and brands are the property of their respective owners.

XMB

XMB

Hot Chips 2005

Digital Enterprise Group

TNB I/O Flexibility

Each PCI Express*
 x8 port can be split into two x4 ports

Sys Bus

 All PCI Express ports are Hot-Pluggable

Sys Bus

Twin Castle North Bridge

(TNB)

PCI Express* Hot-Plug

x4 PCI Express*
x4 PCI Express

x4 PCI Express x4 PCI Express

x4 PCI Express

x4 PCI Express

HI 1.5

Twin Castle provides
I/O flexibility

© Copyright 2005, Intel Corporation. All rights reserved. *Third party marks and brands are the property of their respective owners

Hot Chips 2005

Digital Enterprise Group

Hot-Plug

Z

Front-Side Bus

- 40-bit address bus. Double pumped
- 64 bit data bus. Quad pumped
- Independent Control Signals
- SEC-DED data ECC. Parity on address/ response
- Up to 3 loads per bus
- 167 MHz frequency => 5.3 GB/s B/W
- TNB ensures cache coherency across both FSBs
- Modified Enhanced Defer Protocol for improved pipelining

Independent Memory Interface Link

- Four IMI links. Connects up to 32 DIMMs through XMBs
- High-speed serial link operating at 2.67 GHz
- 21 bit wide incoming.10 bit wide outgoing
- Sustainable data bandwidth in each IMI link
 - 5.33 GB/s inbound
 - 2.37 GB/s outbound
- Data Integrity
 - Inbound data from DDR protected by a x8 SDDC ECC
 - Control and O/B data protected by CRC
- Data from memory sent directly to FSB for lower latency
 - ECC decode done off-line. Results sent to FSB and CDC
- Connects to XMB
 - Supports two 72-bit wide DDR channels
 - Each DDR capable of supporting up to 4 DIMMs/8 ranks
- End to end retry by TNB to correct uncorrectable errors

PCI-Express* Links

- Up to 7 PCI-Express* links with 28 Lanes
- Gen 1: Differential links at 2.5 GHz. 8b/10b
- Each x8 link partitionable to two independent x4s
- Lane Reversal Support
- Remembers prior failed lane assignment
 - Adopts a different assignment
- CRC-32 for TLPs. Retry. CRC-16 for DLLPs
- Degradation support: training and run-time
 - x4 supported on any two sets (includes reversal)
 - x2 supported on (0,1) and (4,5) including reversal
 - x1 anywhere
- Support for max 256 endpoints
- Max payload size: 256B. Read request size: 4KB

Other Interconnects

- Hub Interface
 - 66 MHz. 8 bit data. Quad data rate. => 266 MB/s
 - Parity Protected
 - Connects to ICH for access to legacy I/O
- JTAG: To access internal config registers and for production testing
- SM Bus: Two sets
 - One set for accessing internal config registers
 - Second set for Hot Plug through Phillips 9555 parts both for IMI and PCIE

RAS Features

- Major interfaces: ECC/CRC/Parity protected
- Internal data path is ECC protected.
- Poison Support throughout : memory, PCI-E*, HI, and FSB
- Leadership Memory RAS
 - Single DRAM error correct (x8 or x4 device)
 - Double error detect
 - Demand and Patrol (proactive) scrubbing by H/W
 - Memory Mirroring
 - Memory RAID (level 5)
 - DIMM Sparing to survive DIMM failure (by XMB)
 - Hot Plug Memory board (XMB + DIMMs)

Memory Mirroring

- Memory replicated behind another XMB
- Write: TNB Updates both
- TNB interleaves between the two XMBs
 - Better performance
- Read failure (Uncorrectable) causes retry
 - If retry fails that copy is marked bad
 - Good data read from the other XMB
- TNB has a re-silvering engine to copy data when bad XMB is hot replaced
- Mirroring provides higher system reliability

Memory Mirroring

- Normal Operation
 - Correctable Error
- Uncorrectable error
 - Interface is disqualified after retry
 - New transactions directed to image1

Memory RAID

- Need 4 XMBs. Parity striped across
- Read sent to appropriate XMB
- Write operation
 - Read the parity XMB and the XMB with data
 - XOR and write back to both data and parity XMB
- Read from a failed XMB
 - Data read from three other XMBs
 - Data of the failed XMB reconstructed by XOR
- Write to failed XMB
 - Reconstruct old data by reading from 3 other XMBs
 - Update the 3 XMBs
- Resilvering engine in TNB reconstructs contents following a hot replace of the failed XMB.
- Provides higher system reliability and availability

RAID Failed Read Scenario

1. Read request sent to three XMBs.

2. Read Data Returned.

3. Original Data reconstructed

Read Address A

Common Data Cache (CDC)

- Coordinates FSB and I/O accesses to memory
- Connects to FSB, IMI and IO Unit clusters
 - 16B wide data path in each direction with ECC
 - Separate address and control buses in each direction
- Aggregate data bandwidth of more than 42 GB/s
- Core frequency: 333 MHz
- Stores coherent and non-coherent data
- Performance boost with hot cache lines
 - Latency: 72 ns with CDC hit vs 134 ns to memory (idle)
- Cache lines help I/O performance
 - IO Unit prefetches cache lines for DMA reads and writes
 - Masks I/O latency
- Performs write coalescing

Front Side Bus Cluster

- Interface logic to the CPU busses
- Tracks up to 12 in-order requests and 32 deferred requests
- Requests to memory and IO are deferred
 - Completed using Defer Reply transaction or Modified Enhanced Defer Phase
 - Defer Reply provides maximum CPU compatibility
 - Modified Enhanced Defer provides maximum performance
 - Supported by Potomac processor
 - Lower latency
 - Lower bandwidth consumption
- Logic support for two multi-core CPUs per bus
- Arbitration optimizations minimize latency and maintain fairness across the two front-side busses

Cache Coherency Flow

- 1. CPU issues request on FSB.
- 2. TNB forwards request through fast path to IMI. TNB checks CDC state and forwards snoop to remote FSB.
- 3. TNB collects snoop results from FSBs and early data warning from XMB.
- 4. TNB initiates modified enhanced defer phase on FSB. CPU prepares for data return.
- 5. Data arrives from IMI.
- 6. TNB forwards data through CDC fast path to FSB.

IO Unit

- Two independent IO Units in the chip
 - IOU 0: HI and 12 PCI-E* lanes
 - IOU 1: 16 PCI-E lanes
- Novel scalable design
 - Basic building block: x4
 - Can put two of them to work as a x8
 - e.g., can cascade two x4 CRC blocks to form x8 CRC block
 - Transaction layer FIFOs shared
 - A x8 link gets twice the storage of a x4 link
- PCI-E*: Physical, Link, and Transaction layers
- Transaction layer shared with HI
- HI has separate link and phy layers.

IO Unit

- Support for full peer-to-peer transactions
- PCI/E ordering handled in IOU only
- IO Unit requests CDC to prefetch cache lines for DMA read and writes.
 - Masks memory (and snoop) latency
 - NP requests prefetched even when ordering is not ok
 - CDC gets the data coherent into its cache
 - IOU fetches data when ordering is ok
 - IO Unit sends prefetches for posted transactions in order
 - Enables CDC to get data / ownership
 - Fetches are serialized to meet ordering rules
 - Writes follow fetches
- Performance features
 - Out of order reads
 - Completion coalescing
- Inbound completion credits: Infinite

Third party marks and brands are the property of their respective owners.

Hot Chips 2005

Digital Enterprise Group

Performance Enhancements

- FSB IMI bypass paths to lower latency:
 - On memory requests from FSB to IMI
 - On data returns from memory to FSB. Late ECC indication to FSB
 - CDC updated along with bypass.
- Memory accesses from CPU deferred (Modified Enhanced Defer protocol) to effectively have a split transaction protocol with better pipelining. MED reduces reduces FSB address bus utilization
- CDC caches data and state of recently accessed cache lines
- Conflicting resolution using conflict queue
 - Provides more consistent and predictable conflict resolution
 - Reduces bandwidth consumed retried requests
 - Eliminates need for performance-throttling forward progress
- Memory Interleaving
 - IMI level (Interleave across 4, then 2, then 1)
 - Rank level (Interleave across 8 then 4 then 2)

I/O Performance

- Prefetches for reads and Writes.
 - Hides latency and sustains bandwidth
- Support for `no snoop' attribute
 - Allows I/O to achieve line rate
 - Not limited by system coherent bandwidth (5.3 GB/s)
- Completion Coalescing for DMA reads
 - Sustainable DMA read b/w of 1.8 GB/sec on a x8 link
 - 256 B cache line coalescing with large read requests
 - B/W improvement exceeds 20% with this new feature
 - DMA Write bandwidth about 1.8 GB/s on x8 link
- No head of the line blocking in NP (reads)
 - Round-robin for top 8 (4 for a x4) entries which satisfy ordering
 - Data sent out in 256 B chunk for each request
 - NP entry popped from head of queue when data returned
 - Provides QoS and equitable bandwidth for multiple devices
 - Also helps achieve line rate since large requests from slower devices / interconnects will not block smaller requests from relatively faster devices/interconnects

Twin Castle Error Infrastructure

- Rich set of error logging and reporting features
 - allows error source and cause to be identified
 - first error, next Error, and syndrome logged
 - error logging / reporting can be disabled
 - Programmable severity with different interrupt types
- Error pollution and error containment enforced
 - Recoverable errors (CRC with retry and ECC)
 - Unrecoverable data errors can be poisoned.
 - Error data not allowed to propagate without poisoning
- PCI-E* Advanced Error Reporting support
- PCI-E* errors reporting through MSI or legacy
- Downstream PCI-E* errors are reported through inband messages.

Hot Plug

- Each IMI link (memory board) hotpluggable
- Each PCI-E* slot is hot pluggable
- Serial SMBus interface to 9555 chip for hotplug command and control (attention led, power led, etc)
- Interrupt mechanism for hot plug: SMI as well as MSI (for PCI-E*)

Power Management

- PCI-E*: ASPM Rx.L0s and L1
- PCI-E*: PCI-PM mechanisms
- PM messages
- Sideband interrupt (SMI) as well as MSI support for PM events
- System wide power management modes orchestrated in conjunction with ICH

Debug

- Rich debug features provides TTM advantages
 - Interconnect BIST (IBIST) on PCIE and IMI
 - Helps with board qualification
 - Margining hooks on all major interfaces
 - Transaction BIST for HVM testing
 - Performance Monitors for performance measurements
 - Event monitoring and triggering
 - Address and data matching: FSB
 - Header packet matching: PCI Express* and IMI
 - In-band messages: PCI Express and IMI
 - Response functions
 - Interface Throttle to stress interfaces
 - Chip Freeze
 - Error Injection to validate error correction/ reporting/ logging
 - JTAG/SMBus: access registers and inject transactions

TNB Chip Statistics

• Process: 0.13 μ

Package Size: 42.5 mm

• Transistors: 38.7 million

• Cells: 2.2 million

Frequency: 2.67 GHz memory link

2.5 GHz PCIE

667 MT/s FSB

333 MHz core

TNB Die

Summary

- Twincastle is an x86 based MP chipset.
- Leadership technology with multi-core multiple-CPU support, memory, and I/O to protect customer investments.
- Leadership RAS features.
- Several performance features to enable high performance at low cost
- Rich set of debug features to enable faster customer deployment

