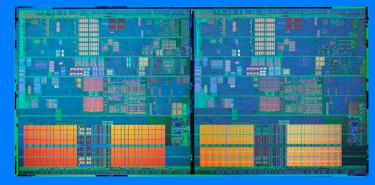
Intel 8xx series and Paxville Xeon-MP Microprocessors

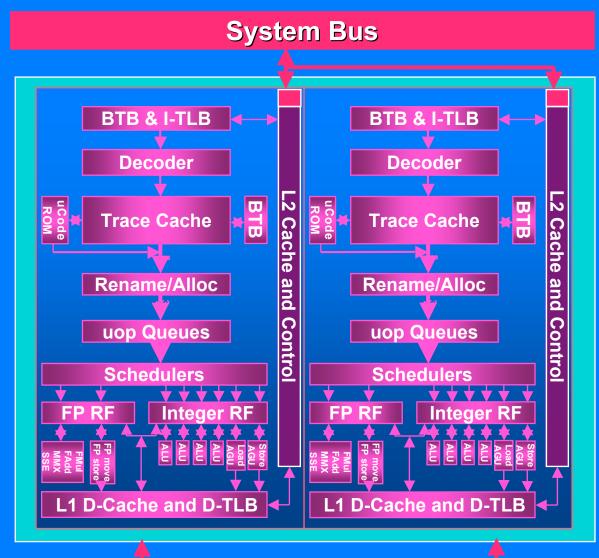
Jonathan Douglas
Intel Corporation

Thanks to: Justin Marquart, James Vogeltanz, Mike Grassi, DEG/BCG package design, Donald Parker & Benson Inkley for help in putting together this presentation.

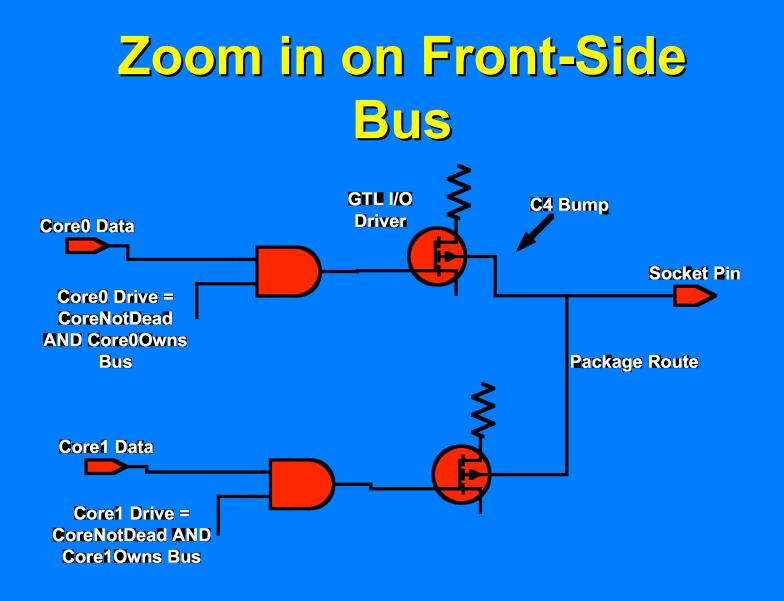
Outline


- Why the move to multi-core
- Overview of 8xx series Pentium4
- Challenges in moving CPU infrastructure to multi-core
- Learning's from the 8xx series Pentium4 design
- Overview of Paxville-MP processor
- Going forward with multi-core designs
- Conclusion

Why rapid move to Dual-Core

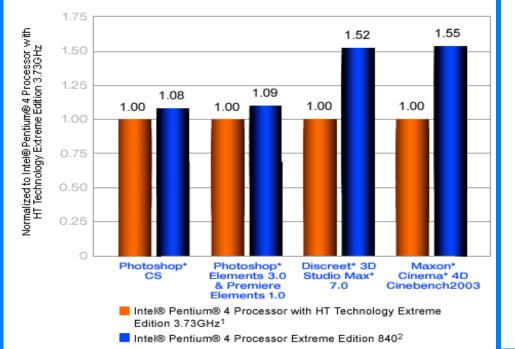

- Single core designs hitting power wall.
 - Need more power efficient way to manage OS loading.
- Natural extension of software migration to multi-threaded apps.
- More threads in 1 core is complex and tax core resources heavily.
- Competitive response.

Overview of 8xx series Pentium4 processor

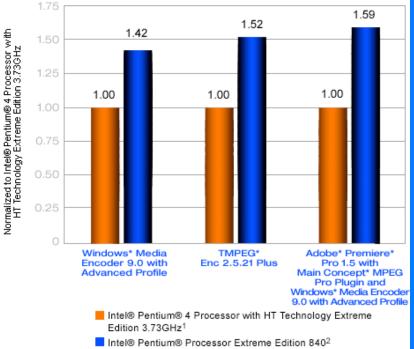

- Dual-Core/Multi-Threaded Pentium®4 Processor on 90nm process
 - 2-1M caches, speeds to 3.2Ghz, support for over clocking, up to 4 threads.
- Shared 800Mhz quad-pumped FSB.
 - Independent bus tuning per agent
- Enhanced auto-halt and 2-state speed step power management
 - Independent events supported per core.

High level block diagram

Core-To-Core Communication



Why the shared bus design

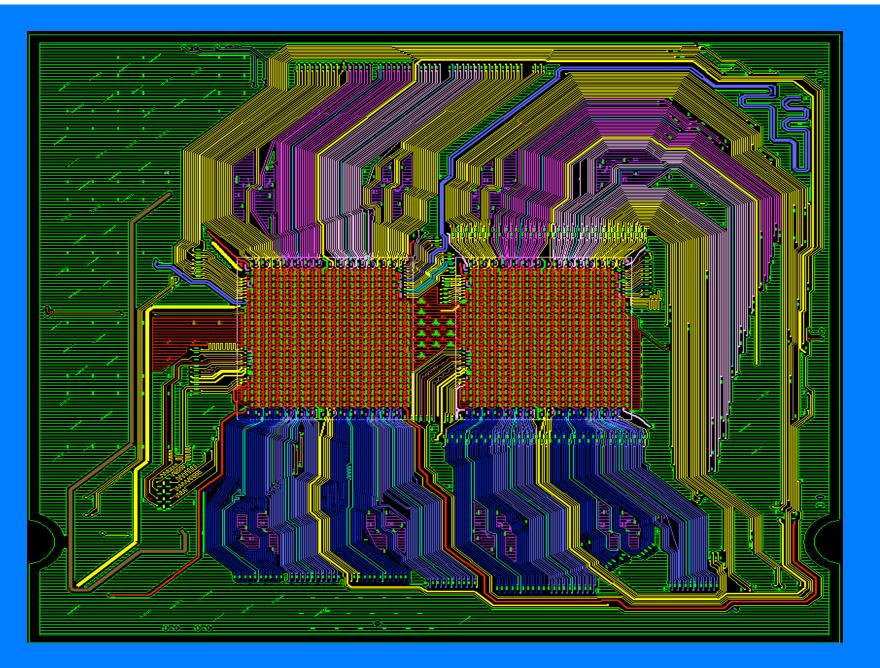

- Time to market a critical factor
 - Leverages existing P4 core
 - Uses existing 775-LGA socket
- P4 core already has right feature set
 - P4 FSB already 4-way compliant.
 - Already architected with thread independent power management.
 - Already 'HT' so 2 cores = 4 threads
- Gives independent caches
 - Plus no extra latency to external memory.

Dual core performance

Content Creation Performance

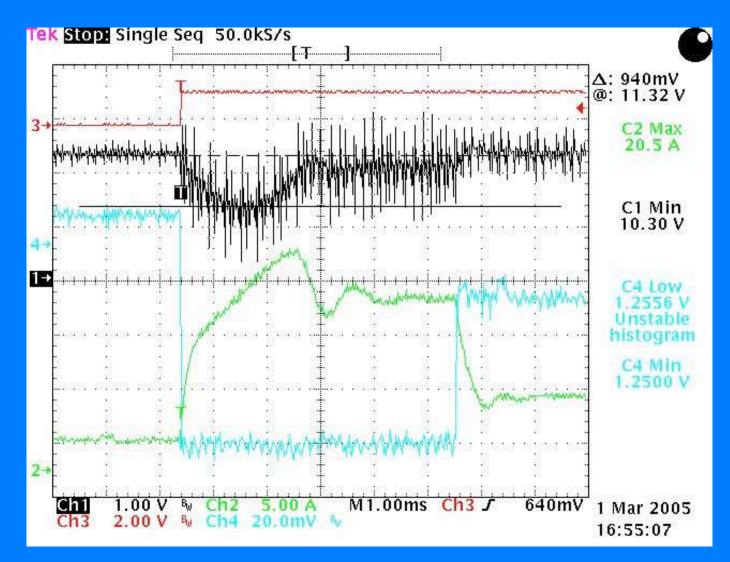
Media Management Performance

 Intel® Pentium® 4 Processor with HT Technology Extreme Edition
 3.73GHz (2 MB L2 Cache, 1066 MHz FSB) and Intel® 925XE Express Chipset
 Intel® Pentium® Processor Extreme Edition 840 (2x1 MB L2 Cache, 3.20 GHz, 800 MHz FSB, HT Technology) and Intel® 955X Express Chipset


Of gnifarigim ni segnelladO multi-core

- Rapid movement from single core design to multi-core design presented many complexities
 - Already existing platform hardware
 - Factory already populated with manufacturing hardware
 - Test database developed for single core
 - Tight package dimensions
 - Little power headroom left

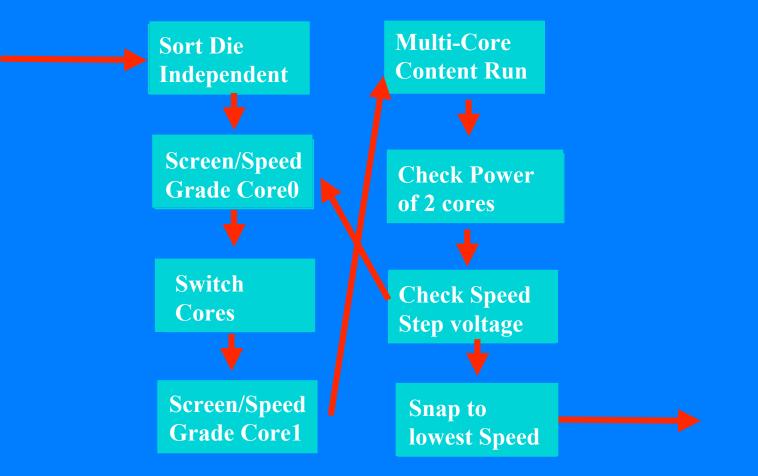
Package issue


Package design a huge challenge

- More layers required (Just address/data alone is > 100 more signals)
- Same package cavity and pinout couldn't grow.
- New IHS (Integrated Heat Sink) required for thicker package
- Power cap placement can't be centered over both cores
- Existing signals on 4 sides of core causes power bus routing voids.
- No logic outside core. Any needed logic must be in core. Lots of 'special signal' headaches like thermal diode, ODT (On-Die Termination).

Power constraints

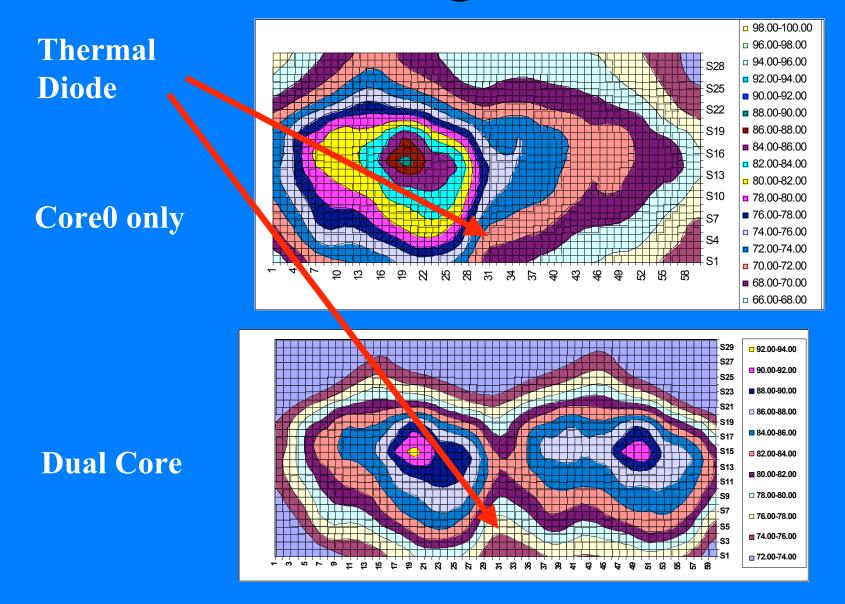
- Existing platform dictated 1 power plane for both cores
 - Penalized for 2X leakage, required architecting a speed-step protocol
- 2 cores powering up & fully active cause large di/dt events
 - Required Voltage Regulator mods to grow headroom to 125A plus silver box restrictions
- Required BIOS change to boot to low voltage/frequency on performance parts.
 - BIOS initiates speedstep event to all threads after completion



2-core boot to full speed, weak power supply

Test issues

- Thousands of hours invested in single core coverage database
 - Copied core design a plus
 - Needed to add 'core swap & kill' hardware to reuse database
- Existing single core test can't expose problems on core->core interaction
 - Voltage transients, thermal gradient
 - Some explicit dual core content required


Test flow example

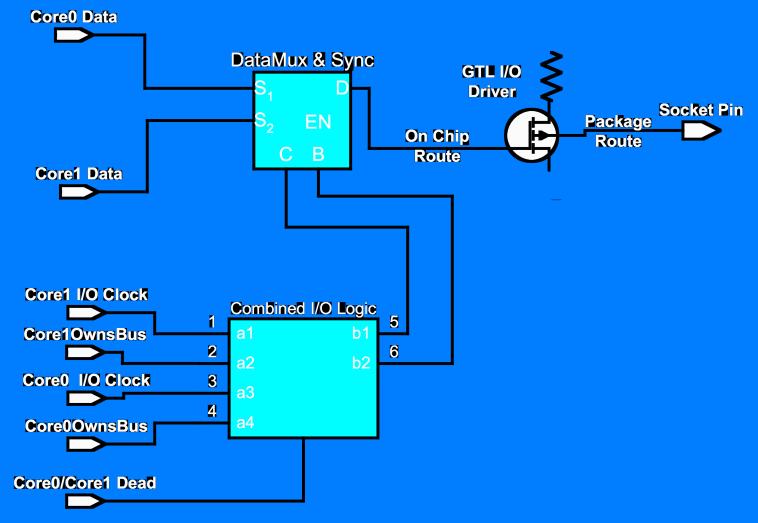
Thermal issue

- Platforms support only 1 ADC for thermal monitoring
 - 2 cores can create many different thermal profiles
 - Diode temp to junction hot spot delta can vary depending on workload & core utilized
- Required thermal protection to be independent on both cores

Thermal gradients

Limitations of shared bus

- 2 loads on bus = less bus speed.
 - Plus 1M cache = more bus traffic. Double whammy.
- Difficult package design
 - ~2x traces to same number pins
- Thermal & electrical properties degrade.
 - Slow down penalizes both cores.
- Segregated die.
 - Test overhead. Slowest die constrains final product.


Overview of Paxville-MP processor

- Dual-Core/Multi-Threaded Xeon Processor on 90nm process
 - 2-2M caches, 667Mhz min FSB, up to 4 threads.
 - Platform still 4-P compatible for up to 16 threads per platform
- Dual bus platform 2 CPU agents per bus
 - Only 1 load presented to system by CPU
- Enhanced auto-halt and 2-state speed step power management
 - Independent events supported per core.

Advantages of new Paxville design

- Single CPU load on bus. Allows faster bus, less electrical load.
 - 8 agents (16 threads) on top end platform
- Larger cache = less FSB bottlenecks
- Better package design
 - Fewer traces allows better power delivery
- Integrated die (monolithic)
- Consolidated bus logic allows test enhancements

Paxville consolidate bus

Challenges with Paxville design

- Degraded I/O timing with shared bus
 - Requires extra logic & routing but must be compatible to existing bus timing.
 - Requires circuit tricks for quad pumped bus.
- Enhancements to validation tools
 - 8xx series treated as 2 independent CPUs.
 Paxville is integrated 1 die.
- Additional complexity in test infrastructure.
 - New test modes & consolidated bus logic.

Going forward with multi-core

- Solving bus bottlenecks.
- Integrate next level cache for less bus traffic.
 - Downside is higher latency on cache misses.
 - Upside is lower pin count & can stay with a flexible bus architecture
 - Cache thrashing by multiple cores an issue if size isn't large enough – swamps bus again.
- Point-to-point' busses & memory controllers
 - Upside is no bus traffic collisions
 - Downsides are being locked into memory protocol and a huge pin count increase.

Going forward with multi-core

- Solving power issues..
- Need better power state management
 - Single voltage plane is an issue can't drop leakage on inactive cores
 - Need more intelligence in controller
- Segment products with power in mind
 - Typically done more now on speed/feature set.
 - Can microprocessor be 'tuned' for a power segment.

SpeedStep protocol

Core Activity over time

Core0 high activity		Core0 asleep		Core0 low activity	
Core1 asleep	Core1 hig	n activity	Core1 asleep	Core1 high activity	Core1 low activity
High voltage			Low voltage	High voltage	Low voltage
. .			••••		
Limited opportunities to reduce power, much harder					
W.	ith even	more co	ores		25

Going forward with multi-core

Core counts will continue to increase.

- Higher threaded applications give opportunity to have better power / performance.
- Power is wasted when a core that isn't working on a thread is alive, but performance is wasted if OS has to continually swap out threads.
- Expect that logic to 'glue' cores together will become as critical as the core
 - Need lots of sophistication to take full advantage of a high core count
 - Need busses capable of handling the high traffic to memory