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High-End Reconfigurable Computer

(HERC)

• A computer with supercomputer-like performance, based
solely on FPGAs and/or other reconfigurable devices as
the processing elements.
– The inherent fine-grain flexibility of the FPGAs allow all data-

paths, control, memory ports, and communication channels to be
customized on a per-application basis and parallelism to be
exploited at all levels.

• BEE2 development is underway:
– demonstrate of the concept;

– It will motivate engagement of application domain experts;

– Motivate creative thinking in software/programming tools;

– Be the first in a series of machines;

– It is a joint project with Xilinx using their 130nm devices.

• Based on concepts demonstrated in BEE2 prototype, 1
petaOPS (1015) in 1 cubic meter attainable within 3 years.
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Applications Areas of Interest

• High-performance DSP

– SETI Spectroscopy, ATA / SKA Image Formation
– Hyper-spectral Image Processing (DARPA)

• Scientific computation and simulation

– E & M simulation for antenna design (BWRC)
– Fusion simulation (UW)

• Communication systems development Platform

– Algorithms for SDR and Cognitive radio

– Large wireless Ad-Hoc sensor networks

– In-the-loop emulation of SOCs and Reconfigurable Architectures
• Bioinformatics

– BLAST (Basic Local Alignment Search Tool) biosequence
alignment

– Molecular Dynamics (Drug discovery)
• System design acceleration

– Full Chip Transistor-Level Circuit Simulation (Xilinx)
– RAMP (Research Accelerator for MultiProcessing)
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Radio Astronomy (1MHz~500GHz)

Image courtesy of NRAO/AUI

Colliding black holes

Radio jets
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Allen Telescope Array (CA, USA)

Artist’s conception
Hat Creek, California
350 Antenna
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Allen Telescope Array (cont.)

0.5~11GHz RF
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Large-N, Small-D Concept

• Use lots of small diameter antennas to achieve
large aggregate collecting area

• Benefits

– Extremely high quality coverage

– Very wide range of baseline lengths

– Flexible usage model, multi-user, multi-subarrays

– Reliability through redundancy

– Economy of scale
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Telescope cost for fixed collect area

Cost ($)

Antenna diameter

Antenna Steel
Cost Dominate

Compute Hardware
Cost Dominate

Moore’s Law
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Problems with existing approach

• All specialized instrument design
– Separate PCB for each subsystem, dedicated

functionality

– Custom interconnect, backplane, and memory
interface

– Fully global synchronous I/O and processing
• Clock distribution, power consumption, and voltage

regulation

• Each instrument design cycle is 5 years!!!

• Instrument upgrade takes the similar effort as
designing a new product
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Why not use…

• Microprocessor/DSP clusters?

– Multi-processor programming is extremely hard,
especially for real-time applications

– Limited I/O capability, high power consumption, low
computational density

• ASIC?

– Lack of flexibility

– Long design cycles

• FPGA? Sure!
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Moore’s Law in FPGA world

100X higher performance100X higher performance

100X more efficient100X more efficient

than microprocessors!than microprocessors!
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• Based published results at ISSCC conferences and our
measured results (FPGA).

• Specialized circuits use less energy per operation.

• Inherent computation density means devices can run at lower
speed consuming less power.

• Reduced power consumption is a priority for FPGA vendors.

Energy Efficiency (MOPS/mW)
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BEE2 system design philosophy

• Compute-by-the-yard

– Modular computing resource

– Flexible interconnect architecture

– On-demand reconfiguration of computing resources

• Economy-of-scale

– Ride the semiconductor industry Moore’s Law curve

– All COTS components, no specialized hardware

– Survival of application software using technology
independent design flow
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BEE2 Compute Module

14X17 inch 22 layer PCB
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Basic Computing Element

• Single Xilinx Virtex 2 Pro 70 FPGA

– ~70K logic cells (35K slices)

– 2 PowerPC405 cores

– 324 dedicated multipliers (18-bit)

– 5.7 Mbit SRAM on-chip

– 20X 3.125-Gbit/s duplex serial
communication links (MGTs)

• 4 physical DDR2-400 banks
– Each banks has 72 data bits with ECC

– Independently addressed with 32 banks
total

– Up to 12.8 GBps memory bandwidth,
with maximum 4 GB capacity

FPGA
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Compute Module Diagram
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Inter-Module Connections

Global

Communication

Tree

Stream Packets

Admin, UI, NFS

Compute

Module

As

Tree node

Compute

module

Compute

module

4X 4X

N-modules

4X 4X

100 Base-T Ethernet Switch

NAS

10G Ethernet Switch
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19” Rack Cabin Capacity

• 40 compute nodes in 5 chassis (8U)
per rack

• ~40TeraOPS, ~1.5TeraFLOPS
• 150 Watt AC/DC power supply to

each blade
• ~6 Kwatt power consumption
• Hardware cost: ~ $500K
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Programming Model :
Discrete Time Block Diagram with FSM

• Xilinx system generator library with BEE2 hardware
specific hardware abstractions

• User assisted portioning with automatic system level
routing

DI DO

A

R/WS2

S1

Control Data Path User Macros

StateFlow,

Matlab

HDL

CoreGen

Module

Compiler

Black Boxes

Block Diagrams:

Matlab/Simulink:

Functional simulation,

Hardware Emulation
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BEE2 hardware abstractions

• Data flow operators
– Data type: fix-point

– Math operators: +/-, *, /, &, |, xor, ~, >, =, <, srl, sll, sra

– Control operators: demux/switch, mux/merge

• Memory
– On-chip SRAM/Registers: shift register, RAM, ROM

– Off-chip DRAM: stream RAM

• Communication and I/O
– Static links: stream I/O

– Dynamic links: Remote DMA

• Synchronization
– Time stamp
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Tool flow

• Xilinx ISE 6.3i SP3

• System Generator 6.3i

• Synplify Pro 7.7.1

• Matlab 7 / Simulink 6

• BEE_ISE 2.1.0

– Tool flow wrapper in Matlab
GUI

– Automate CAD flow
parameter optimizations and
hardware system specific
parameters

– Require minimal knowledge
of the tools flow from the
end users
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Radio Astronomy Applications

Focused here first, because
• Experienced with DSP-like problems

• App works well with our existing programming tools
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• SETI Spectrometer
– Target: 0.7Hz channels over

800MHz  1 billion Channel real-
time spectrometer

– Results:

• One BEE2 module meets target
and yields 333GOPS (16-bit
mults, 32-bit adds), at 150Watts
(similar to desk-top computer)

• >100x peak throughput of
current Pentium-4 system on
integer performance, & >100x
better throughput per energy.
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Unified Radio Astronomy DSP

processing architecture

Antenna array size 32 206 350 Notes: 100MHz band from each antenna

Baselines (# 

correlations) 496 21115 61075

BEE2 modules (PFB) 1 7 11 Dual polarization

BEE2 modules (XMAC) 1 43 123

BEE2 modules (Imager) 1 29 82 512x512 pixels image

Digitizers 4 26 44 1024 frequency channels per pixel

Ethernet switches 2 31 86

estimated $ total(K) 99.20$ 2,036.00$  5,441.00$  1 image dump / second
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4 antenna correlator designs
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Benchmark applications

• 1024 channel dual polarization Polyphase Filter
Bank (PFB) with 8K tap filter coefficients

• 1024 channel 2 input dual polarization cross
correlator (XMAC)

• 256 million channel PFB based spectrometer

• All optimizations were performed on the Simulink
level, and tool flow options set from BEE_ISE2,
no HDL tweaking



August 16th, 2005 EECS, UC Berkeley 26

PFB1K (4 instances in 1 FPGA)

• Resource Utilization:
– Flip Flops: 45,856 (69%)

– LUTs: 14,816 (22%)

– Slices: 25,380 (76%)

– Block RAMs: 216 (65%)

– MULT18X18s: 256 (78%)

• Max clock rate:

– 252.8MHz (2VP70-7)

– 72GMAC/s per FPGA
@250MHz

• Power consumption: 26.5W

• Tool Flow run-time/Mem
– Matlab/XSG: 10min/303MB

– Synth: ~2 min/250MB

– XFLOW: 84 min/1GB
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XMAC (5 instances in 1 FPGA)

• Resource Utilization:
– Flip Flops: 45,765 (69%)

– LUTs: 33,420  (50%)

– Slices: 24,915 (75%)

– Block RAMs: 0 (0%)

– MULT18X18s: 0 (0%)

• Max clock rate:

– 227.8MHz (2VP70-7)

– 200 GMAC/s per FPGA @
200MHz

• Power consumption: 6.65W

• Tool Flow run-time/Mem
– Matlab/XSG: 2min/212MB

– Synth: 2 min/178MB

– XFLOW: 137 min/1.2GB
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256M channel spectrometer

• 8K PFB (64K tap) + 32K pt FFT
• Resource Utilization:

– Flip Flops: 30,964 (46%)
– LUTs: 13,326 (20%)
– Slices: 18,958 (57%)
– Block RAMs: 328 (100%)
– MULT18X18s: 128  (39%)

• Max Clock Rate:
– 230.5 MHz (2VP70-7)
– 28.8 GMAC/s per FPGA

@200MHz

• Power Consumption: 13W
• Tool Flow run-time/Mem

– Matlab/XSG: 32min/1.2GB
– Synth: ~2 min/380MB
– XFLOW: 64 min/890MB
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Xilinx FPGA vs. TI DSPs

• Xilinx Virtex 2 Pro FPGA

– 2VP70
• Technology: 130nm CMOS

• Clock rate: 200~250MHz

• Unit Cost: $1500~2400

– 2VP20
• Technology: 130nm CMOS

• Clock rate: 200~250MHz

• Unit Cost: $366

• TI C640 DSP

– C6415T-1G
• Technology: 90nm CMOS

• Clock rate: 1GHz

• Unit Cost: $270

– C6415-7E
• Technology: 130nm CMOS

• Clock rate: 720MHz

• Unit Cost: $135
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Comparison with DSP Chips

• Spectrometer & polyphase filter bank (PFB):
16 mult, 32bit acc, Correllator: 4bit mult, 24bit
acc.

• Cost based on street price.

• Assume peak numbers for DSPs, mapped for
FPGAs.

• TI DSPs:

– C6415-7E, 130nm (720MHz)

– C6415T-1G, 90nm (1GHz)

• FPGAs

– 130nm, freq. 200-250MHz.

• Metrics include chips only (not system)

Energy Efficiency

Performance

Cost-Performance
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Cost Effective Solutions for PFB
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Project status

• 10 node system manufacturing (8/2005)

• Demonstration applications:

– NASA DSN 128M channel spectrometer (7/2005)

– VLBI 1GHz spectrum data recorder (9/2005)

– 8 antenna 200MHz dual polarization correlator
(9/2005)


