AIEA。 Nios°II

The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005

Agenda

Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture CPU Micro-architecture Nios II/f CPU Description - Pipeline details Nios II Embedded Systems

- Taking advantage of FPGA configurability

Nios II Introduction

Nios II Overview

Nios II is Altera's soft-core configurable CPU

- Introduced summer/2004
- New 32-bit RISC Instruction Set Architecture (ISA)
- Replaces original 16-bit Nios
- Over 4500 active licenses
 - Most licensed embedded CPU in the world
- Designed for embedded FPGA-based systems
 - Strong performance (up to 225 Dhrystone MIPS)
 - Support for many operating systems
 - Available in all current Altera FPGAs

Why a New Instruction Set?

Primary Issue

- Existing instruction sets optimized for ASIC
- Inefficient in FPGA
- Secondary Issue
 - Existing instruction sets have licensing restrictions

Nios II Size

Largest 90nm FPGA 180,000 LUTs

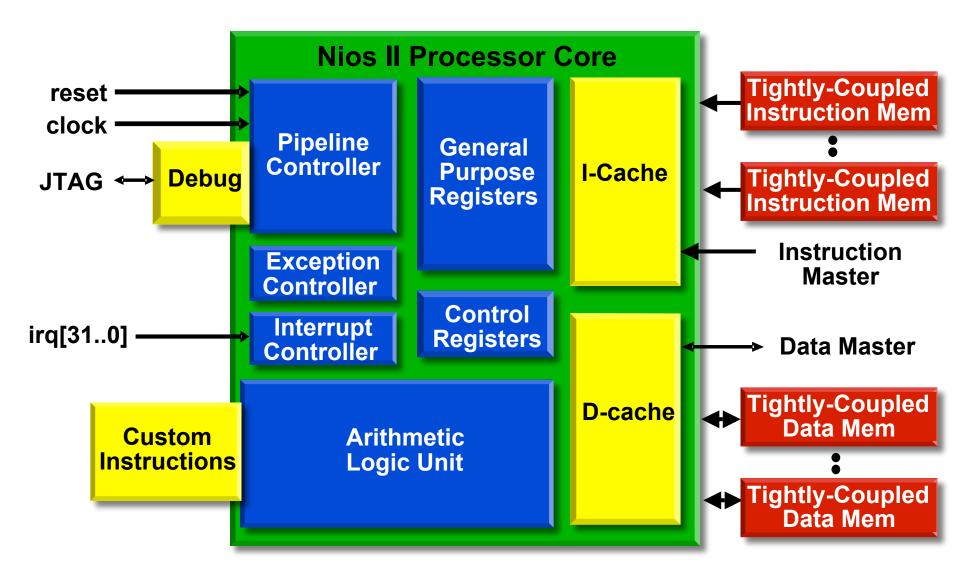
Smallest 90nm FPGA 4600 LUTs

13% of FPGA Nios II/e "economy"

35¢ in lowest cost FPGA

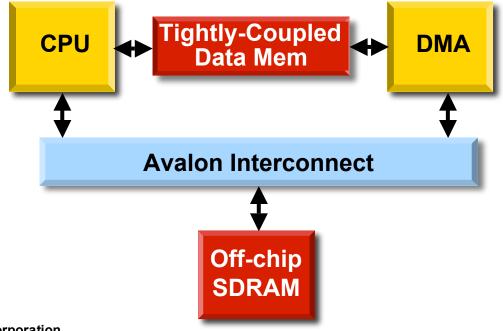
Nios II		Nios II
Nios II	FPGA	Nios II
	Nios II	

1% of FPGA Nios II/f "fast"



Nios II is Classic RISC

- 32-Bit Instruction Set
- 32-Bit Data path
- 32 General-Purpose Registers
- 3 Instruction Formats
- 82 Instructions
 - Instruction set is not configurable
 - Provides code compatibility for all implementations
- Up to 256 Custom Instructions
- 3 Operand Instructions (2 source, 1 destination)
- Optional Multiply and Divide


Nios II Processor Block Diagram

Configurable Tightly Coupled Memories

- Map on-chip RAMs into CPU address space
 - Behave like caches that never miss
 - One access every cycle without stalling
- FPGA RAMs are already dual-ported
 - One port for Nios II connection
 - Second port available for other uses

Configurable CPU Implementation

Choose your pipeline

Nios®II	Nios II/f "Fast"	Nios II/s "Standard"	Nios II/e "Economy"
Pipeline	6-stage	5-stage	none
Max Frequency ₁	200 MHz	180 MHz	210 MHz
Max D-MIPS ₁	225	130	30
Size (4-input LUTs)	1800	1200	600
Branch Prediction	Dynamic	Static	no
I-Cache	Up to 64K	Up to 64K	no
D-Cache	Up to 64K	no	no

1. Characteristics in Stratix II 90nm FPGA

Configurable Pipeline Options

Cache options

- Size
- Line size
- Multiply instruction options
 - Fully pipelined using built-in FPGA multipliers
 - Un-pipelined using normal LUT logic
 - Trap (software emulated)
- Divide instruction options
 - Un-pipelined using normal LUT logic
 - Trap (software emulated)

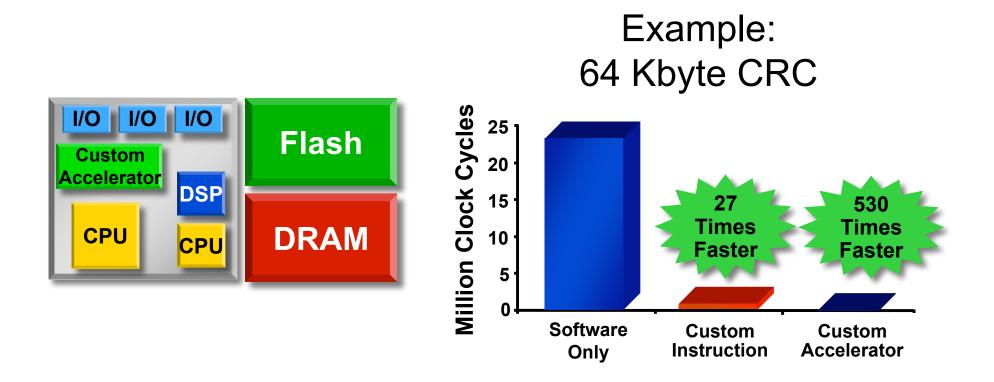
Configurable Custom Instructions

Users write Verilog/VHDL for custom instructions

- Added to CPU with automatic configuration tool
- Callable from C-code or assembly language
- Pipeline independent
- 2 source operands and 1 destination operand
 - Access CPU register file
 - Access custom instruction register file
- Combinatorial custom instructions
 - Execute in parallel with ALU
- Multi-cycle custom instructions
 - Stall CPU pipeline until complete

Configuring for Higher Performance

Add Custom Instructions



Software Only

Configuring for Higher Performance

Add Custom Accelerator

FPGA vs. ASIC CPU Design

Efficient FPGA Design Guidelines

RAMs, adders, registers, and multipliers

- Relatively fast and plentiful
- RAMs are already dual-ported
- Muxing and control logic
 - Relatively slow and expensive
- Wire delays
 - Relatively long
- Take advantage of FPGA configurability
 - Minimize run-time control registers
 - Rely on configuration-time options

Existing ISAs are Inefficient in FPGAs

Variable-length instructions or 16-bit instructions

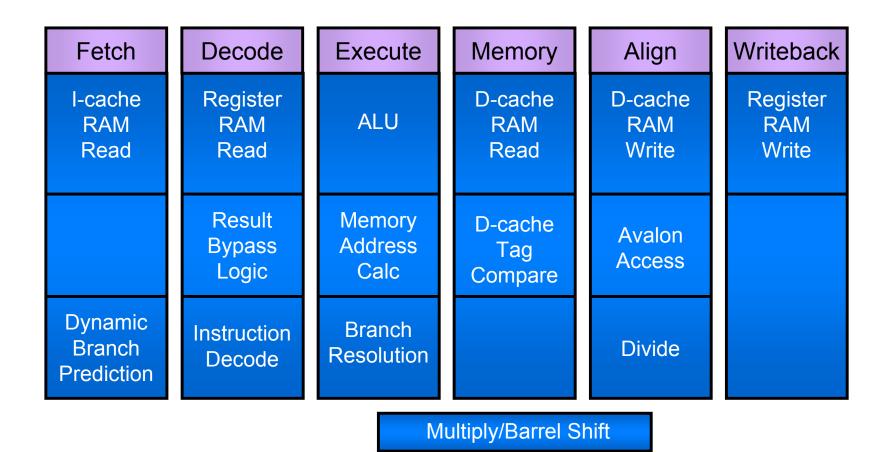
- Higher code density not worth extra control logic
- Register windows
 - Lower memory bandwidth not worth extra control logic
 - Can create difficult real-time requirements
- Barrel shifts combined with other arithmetic operations
 - Barrel shifts are relatively slow on FPGAs due to muxing
- Delay slots
 - Decreased branch penalty not worth extra control logic
 - Unnatural for some pipelines

Existing ISAs are Inefficient in FPGAs

- Condition code register
 - Complicates pipeline control and increases muxing
- Multiply/divide 64-bit operand registers
 - All 64-bits rarely used in C language and increases muxing
- Many run-time control registers
 - Extra logic not required in a configurable FPGA CPU
- Complex cache management
 - State machines to initialize on reset not worth extra logic
 - Many instruction options for flushing not worth extra logic
- Vectored interrupts
 - Not required for most designs
 - Use custom instruction to reduce interrupt latency

Getting Back to RISC Roots

CPU is an engine to run C code


- Benchmarking shows Nios II has comparable performance to established embedded CPUs
- To increase CPU performance in an FPGA
 - Increase the Nios II cache size
 - Add Nios II custom instructions
 - Add custom accelerators
 - Add multiple Nios II CPUs
 - Add tightly-coupled memories

Nios II/f CPU Description "Fast"

Nios II/f Pipeline

Caches

Direct-mapped

- Set-associative caches inefficient in FPGA

I-cache

- 32-byte line
- Critical word first
- D-cache
 - 4/16/32-byte line
 - Writeback with write allocate
 - One entry writeback buffer

Dynamic Branch Prediction

2-bit branch prediction (g-Share algorithm)

- Branch History Table RAM (256x2 bits)
- No Branch Target Buffer
 - Simple ISA allows fast branch target calculation
- Performance
 - Taken branch is 2 cycles
 - Not taken branch is 1 cycle
 - Mispredicted branch penalty is 4 cycles

Arithmetic Instructions

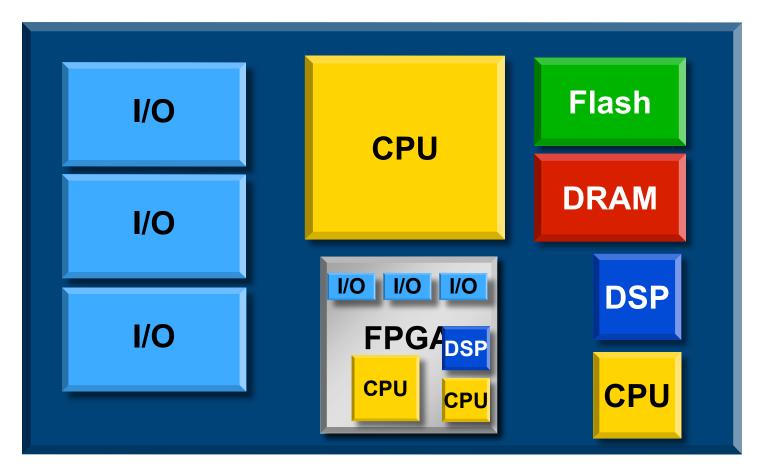
32-bit Multiply

1 cycle throughput (fully pipelined)

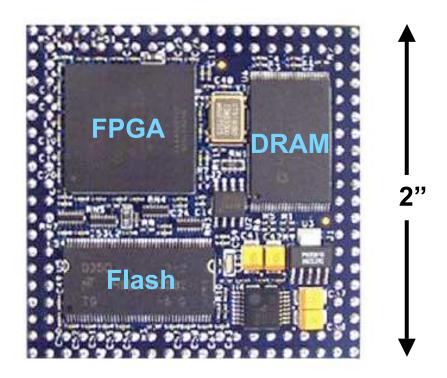
32-bit Divide

- 4-67 cycle throughput (not pipelined)

Barrel shift/rotate


- Uses multiplier with 2ⁿ calculation
- Better performance and lower cost than using LUTs

Nios II Embedded Systems


Board-based Embedded System FPGA-based Embedded System

Move board components into FPGA

Nios II Evaluation Board

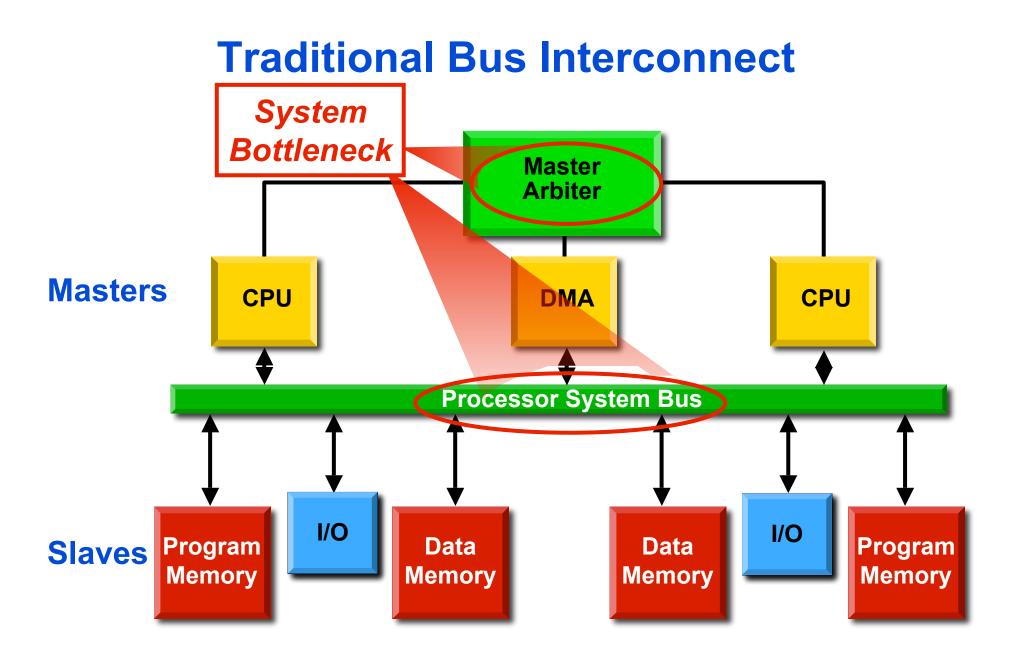
Preconfigured with a web server running under µClinux

FPGA-based Systems

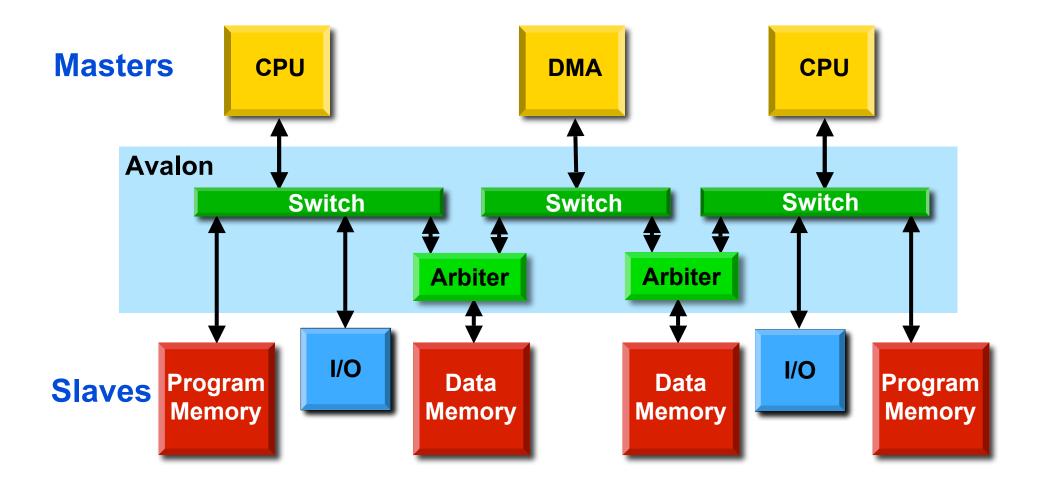
- It's all configurable
 - Configurable CPUs
 - Configurable Memories (on-chip and off-chip)
 - Configurable Peripherals
 - Configurable I/O
 - Configurable System Interconnect
 - Custom Accelerators
- and we provide the tools to make it easy ...

System Configuration Tool

Nios II Processor - Attera		re "cpu" Settings System Generation				-
 Nios Il Processor - Altera Nios Processor - Altera C 	Targ	et	Clock (MHz)			
Bridges	E	Board: Nios Development Board, Stratix II (EP2S60)				
Communication			click to add			
Cryptography	Dev	ice Family: Stratix II 🔽 🔲 HardCopy Compatible				
Display						
EP1C20 Nios Development						
EP1S10 Nios Development	Use	Module Name	Description	Base	End	IRG
EP1S40 Nios Development		🖂 cpu	Nios II Processor - Altera Corporation			
EP20K200E Nios Developm	1 7	instruction_master	Master port			
EP2C35 Nios Development		<pre> data_master</pre>	Master port	IRQ 0	IRQ 31	5
EP2S60 DSP Board Stratix		→ jtag_debug_module	Slave port	0x02120000	0x021207FF	
EP2S60 Nios Development		🖻 ext_ram_bus	Avalon Tri-State Bridge			
Ethernet		→ avalon_slave	Slave port			
Extra Utilities		tristate_master	Master port		21111112	
Fibre Channel		∽⊕ ext_flash	Flash Memory (Common Flash Interface)	≜ 0×000000	0×00FFFFFF	
Legacy Components		► ext_ram	IDT71V416 SRAM	≜ 0x020000	0x020FFFFF	
Math Coprocessors			On-Chip Memory (RAM or ROM)	≜ 0x021000	0×0210FFFF	
Memory		└-⊞ lan91c111	LAN91c111 Interface (Ethernet)	0x02110000	0x0211FFFF	6
Microcontrollers	~		Interval timer	0x02120800		A
Other		►	JTAG UART	0x021208B0	A DECKER OF THE SECOND SECOND	
PCI	~	►	PIO (Parallel I/O)	0x02120860	0×0212086F	2
Peripherals		►	PIO (Parallel I/O)	0x02120870	0x0212087F	
Processor		⊞ lcd_display	Character LCD (16x2, Optrex 16207)	0x02120880		
TestCategory			Interval timer	0x02120820	0x0212083F	3
USB 🔽	~		PIO (Parallel I/O)	0x02120890	0x0212089F	
			PIO (Parallel I/O)	0x021208A0	0x021208AF	
	~		UART (RS-232 serial port)	0x02120840	0x0212085F	4
II Available Components			System ID Peripheral	0x021208B8	In the second second second second	
			SDRAM Controller	≜ 0x010000	0×01FFFFFF	
Add		Mov	e Up			
- Alle		Done checking for updates.				-


CPU Configuration Tool

ڬ Altera Nios II - cpu	
	Module Custom Instructions Data Data Cache: 64 Kbytes ♥ Omit data master port Data Cache Line Size: 32 Bytes ♥ ♥ Include tightly coupled data master port(s). Number of ports: 1 ♥ You must connect each port to exactly one memory in the SOPC Builder connection panel.
Cancel < Prev	/ Next > Finish


Avalon System Interconnect

- Automatically generated for your system
- Switches connect components not a bus
- Slave side arbitration
 - Enables concurrent accesses
- Avalon Functions
 - Arbitration
 - Multiplexing
 - Address Decoding
 - Wait-State Generation
 - Dynamic Bus Sizing

Avalon Switch Interconnect

Conclusions

- Efficient FPGA design takes advantage of configurable CPUs and systems
- Nios II is optimized for FPGA-based systems
- Established CPUs based on ISAs optimized for ASICs are less efficient in FPGAs

The End

Questions?

Backup Slides

Why a Soft-Core FPGA CPU?

FPGA Soft-Core CPU Advantages

Flexibility

- Utilize existing silicon resources
- Scalability
 - Number of CPUs, CPU types, cache sizes, etc.
- Configurability
 - Generation-time configuration instead of run-time
 - Eliminates logic required to control CPU options
- Ubiquity
 - Available in all FPGA families

FPGA Soft-Core CPU Advantages

Relatively small compared to FPGA capacities

- Largest Altera FPGA fits 300 Nios II/e CPUs
- May have spare capacity so CPU is free
- Lifecycle
 - No obsolescence
 - New releases of CPU improve your design
 - Improved efficiency with latest silicon technologies

Altera's Latest FPGA Devices

	Stratix II	Cyclone II
Technology	90 nm	90 nm
4-input LUTs	180,000	70,000
8-bit Multipliers	384	180
On-chip RAM	1.2 Mbytes	144 Kbytes

