

The Configurable Processor Company

Next-Generation Audio Engine

Robert Kennedy Senior Software Engineering Manager Darin Petkov Member of Technical Staff

- Expanding universe of audio standards
- Portable and multi-purpose devices (e.g. handsets) feature:
 - Audio
 - Multiple non-audio applications

Increasing pressure to reduce power and area

tensilica Audio Platform Requirements

Low power and area

- Low cycle consumption by codecs
 - Multiple codecs run simultaneously
 - Cycles left for effects, mixdown, non-audio applications
 - Achieved through MAC, load/store, ALU, Huffman, control performance, parallelism, etc.
 - Fewer cycles -> lower clock rate -> lower power
- Flexibility / programmability
- Multiple data types (16- and 24-bit signal data, sometimes even 32-bit)
- Applicable to the widest range of audio products

tensilica Today's Approaches

General-purpose embedded CPU

Not optimized for high-quality real-time sound processing

DSPs

- General purpose DSPs use more silicon area than required for audio applications
- Not a good match for control tasks

Hard-wired RTL

- Requires one block per audio standard (makes the chip huge)
- No changes possible without redesigning chip

Tensilica's HiFi 1 Audio Engine

- Based on Xtensa V architecture
- Runs AC-3, G.723, G.729AB, MP3, MPEG-2/4 AAC and WMA
- Designed into:
 - Cell phones
 - Portable Audio Players
- With new Xtensa LX technology we do better

tensilica Xtensa LX makes HiFi 2 possible

Xtensa: Configurable, Extensible, Synthesizable

• Extensions driven by analysis of audio codecs

Enabling Xtensa LX features

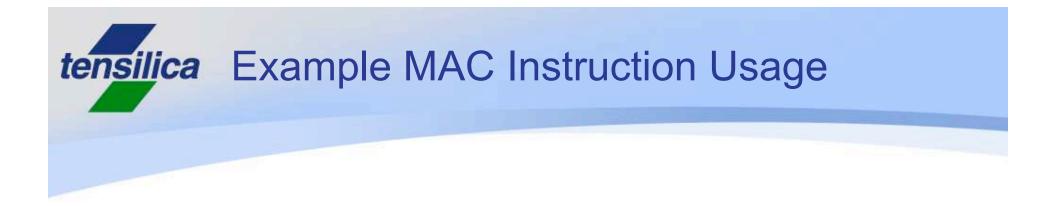
- FLIX (Flexible Length Instruction eXtensions)
 - Base has 16- and 24-bit instruction sizes
 - Custom instructions can use 24-bit and 32- or 64-bit instruction sizes
 - 32- and 64-bit sizes allow multiple independent operations per instruction
 - FLIX relaxes single-issue programming model of Xtensa V / HiFi 1
- Functional clock gating reduces power

HiFi 2 is Xtensa LX with a particular audio-specific set of instruction extensions

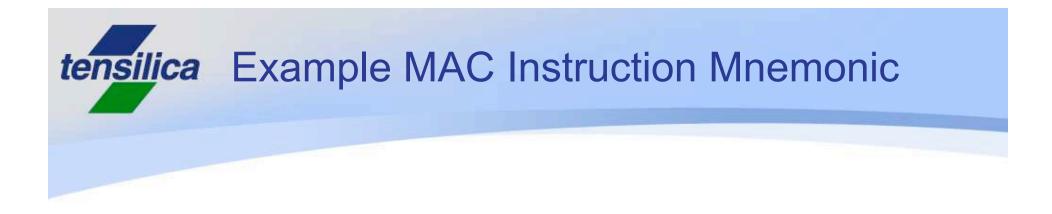
- More custom instructions can be added
- Extensions are first-class citizens
- Imposes a minimum configuration requirement

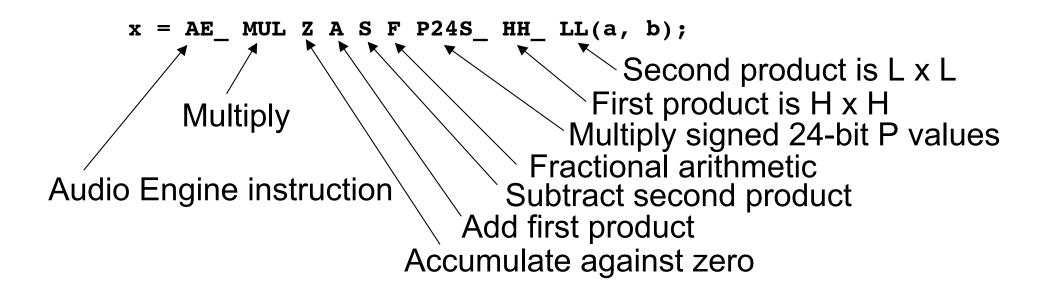
tensilica Instruction Set Overview

HiFi 2 adds more than 300 operations


- Dual multiply with 56-bit accumulate
 - Each multiplier supports 24 x 24 bits and 32 x 16 bits
 - Both multipliers operate every cycle
- Add / subtract and variable / immediate shifts
- Huffman encode / decode and bit stream support
 - Streams interleave coded / uncoded items
- Convert / round / truncate instructions
- Two special audio register files with multiple data types
 - P: 8 x 48 bits (each holds two 24-bit values)
 - Q: 4 x 56 bits (accumulator values)
- Two way SIMD arithmetic and boolean operations on 24-bit or 16-bit data

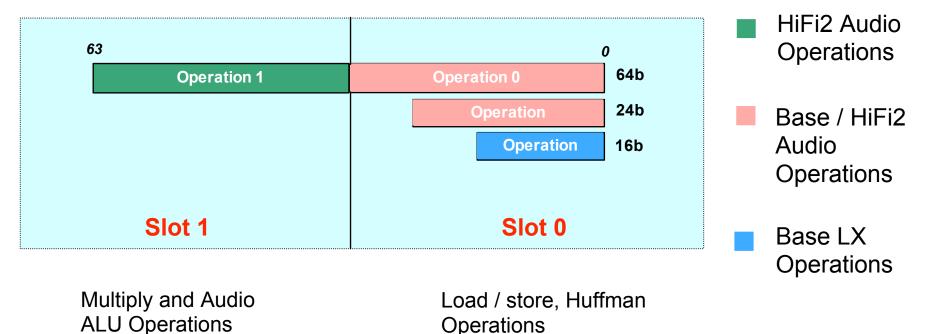
Close-up view: MAC modes supported

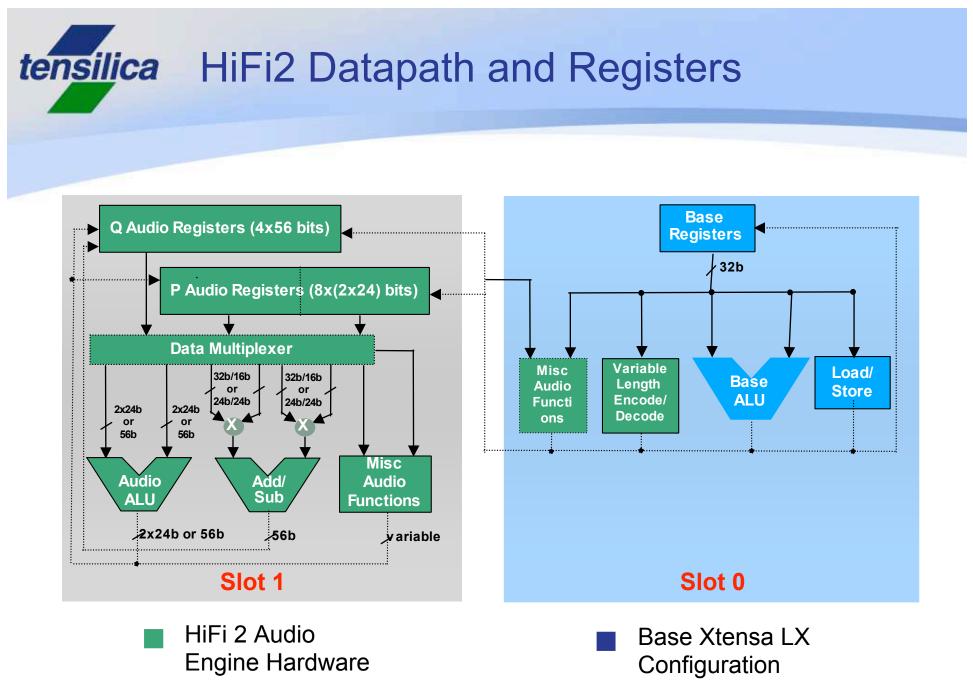

- Single and dual multiplication
- Fractional and integer arithmetic
- Operands:


tensilica

- 24x24 bits P x P (typical audio)
- 16x16 bits P x P with intermediate saturation (AMR, G.7xx)
- 32x16 bits Q x P (WMA at low bit rates)
- Accumulation: overwrite, add, subtract; with or without saturation
- Signed and unsigned:
 - signed x signed (typical)
 - signed x unsigned (multiple precision)


```
ae_p24x2s a, b;  /* allocated in P registers */
ae_q56s x;  /* allocated in Q registers */
...
/* fractional real part of complex multiply:
 * x = a.H * b.H - a.L * b.L */
x = AE_MULZASFP24S_HH_LL(a, b);
```





FLIX: Flexible-Length Instruction eXtensions

Dual-Issue 64-bit FLIX or Single-Issue 24/16-bit Operations

© 2005. Tensilica Inc.

tensilica Design Alternatives Considered

HiFi 2 MAC alternatives:

- 24 x 24 bits (48-bit product, 56-bit accumulation)
- 32 x 16 bits (48-bit product, 56-bit accumulation)
- 32 x 32 bits (8 product bits discarded)
- Single or dual multiplier
- Memory bandwidth:
 - 64- vs. 128-bit bus requirement
 - One vs. two load/store units
 - Bandwidth >2 GB/sec

Implemented features shown in bold green

Configurations for Area, Speed, and Power Comparisons

- HiFi2 extensions
- ✓ 64-bit interface to memory
- 8k icache, 8k dcache, 2-way
- MUL32 option (~5-6k gates) present in one experiment

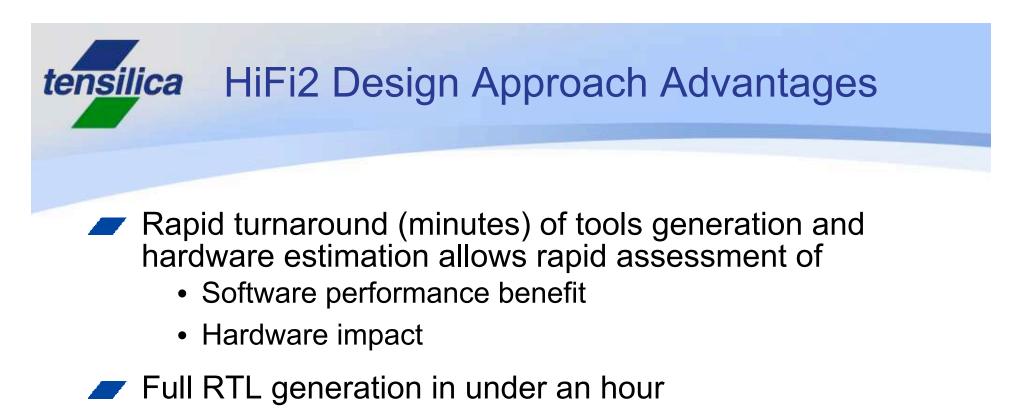
Example Configuration 1 Experiment: MAC Options and Hardware Cost

	Maximum clock rate (MHz)*	Gates*	Area* (mm^2)
Single 24x24-bit MAC	299	88,569	0.98
Dual 24x24-bit MAC	289	100,860	1.12
Dual MAC supporting 24x24 and 32x16	284	101,408	1.13
Dual MAC supporting 24x24, 32x16 and single 32x32	270	110,012	1.22

* Based on TSMC 0.13µ LV, Artisan library, includes MUL32 option

Example Configuration 2 Experiment: Power Dissipation Estimates in Simulation

Implementation	Area (mm^2)	Leakage power (mW)*	Switching power (mW/MHz)*	Real-time MP3 decode power (mW @ 14 MHz)
0.13µ lv** synthesized to 200 MHz	0.94	0.4	0.09	1.6
0.13µ g*** synthesized to 50 MHz	0.85	0.3	0.07	1.3


MUL32 option not present

- * Power measured running MP3 decode
- ** Artisan SAGE-X library
- *** Artisan metro library

Development Cycle Summary

- Six weeks from concept to first customer delivery
- Development guided by:
 - Software and hardware optimization experiments
 - Customer input
- Automatic processor generation provides:
 - Processor core RTL
 - Complete software tools
 - C/C++ compiler
 - Debugger
 - Linker
 - Simulator
 - Assembler
 - Profiler
 - RTOS Hardware Abstraction Layer

tensilica

- Software porting and optimization can (and should!) proceed concurrently with instruction set definition
- Optimized code uses
 - HiFi2-specific data types, register-allocated automatically by the compiler
 - HiFi2-specific instructions, generated by the compiler via instruction intrinsics
 - No assembly language (sure you can, but why?)

tensilica Selected Codec Preliminary Specs

Codec	Worst Case Required MHz
HiFi 2 MP3 Decoder	15-17
HiFi 1 MP3 Decoder	18
HiFi 2 MP3 Encoder	38-40
HiFi 1 MP3 Encoder	65
HiFi 2 AAC-LC Decoder	13-14
HiFi 1 AAC-LC Decoder	26
HiFi 2 AAC-LC Encoder	40-44
HiFi 1 AAC-LC Encoder	85
HiFi 2 WMA Decoder	18-21
HiFi 1 WMA Decoder	30

© 2005. Tensilica Inc.

- Realistic configurations approaching 300 MHz, below 100k gates, below 1.5 mW for MP3 decode
- Excellent performance on broad set of audio applications, including future codecs
- Rich audio instruction set with complete, extension-aware software tools support
- Processor remains configurable to take on additional tasks
- Power, performance, and broad codec support make HiFi2 appropriate for a wide range of consumer and automotive products.