

Telairity-1: A Real Time H.264 High Definition Video Architecture

Richard Dickson August 15, 2005

telairity

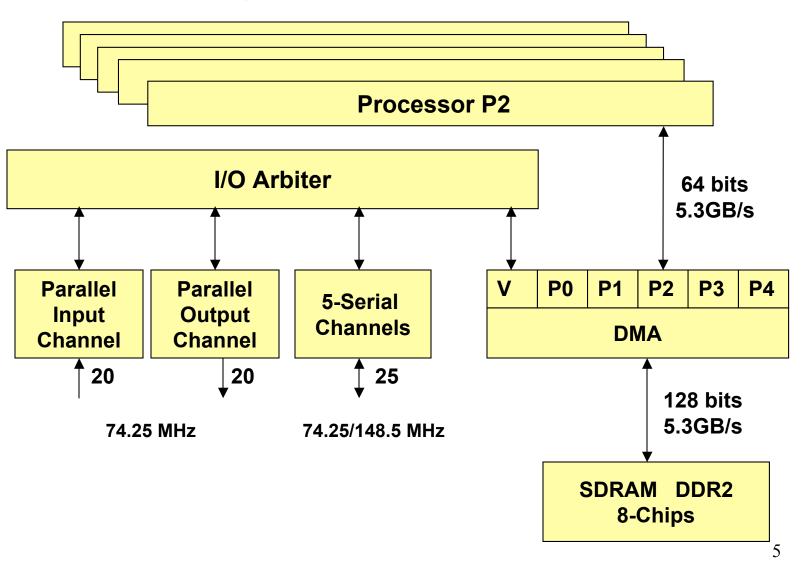
Agenda

- Applications
- Chip architecture
- I/O architecture
- **Processor architecture**
- Performance
- Technology
- Silicon status

Telairity-1 Target Application

Targeted to demanding video applications

- ♦ H.264 real time, main profile, high definition encoding
 - Video servers
 - Broadcast encoders & Transcoders
 - Video editing & authoring
 - Video conferencing
 - Security & Surveillance
- H.264 HD standard is replacement for MPEG2 HD
 - Potential to cut bit-rate in half with same quality, 20Mbps to 10Mbps
 - This reduction in bit-rate takes significant additional compute power in S/W modules:
 - More Motion Estimation options than MPEG2
 - Context Adaptive Entropy encoder (CABAC) for a 15% bit rate reduction over MPEG2


Telairity-1 Single Chip Architecture

- Programmable loosely coupled MP in a single chip
 - ♦ 5 independent vector/scalar processors
 - ♦ 1 video controller
 - ♦ 1 DRAM controller, supports 5.3 GB/s I/O bandwidth
- Telairity-1 offers the smallest footprint & lowest cost for broadcast quality H.264 video compression

PO	P1	Р2	
Р3	Video Controller	P4	
	DRAM Controller		

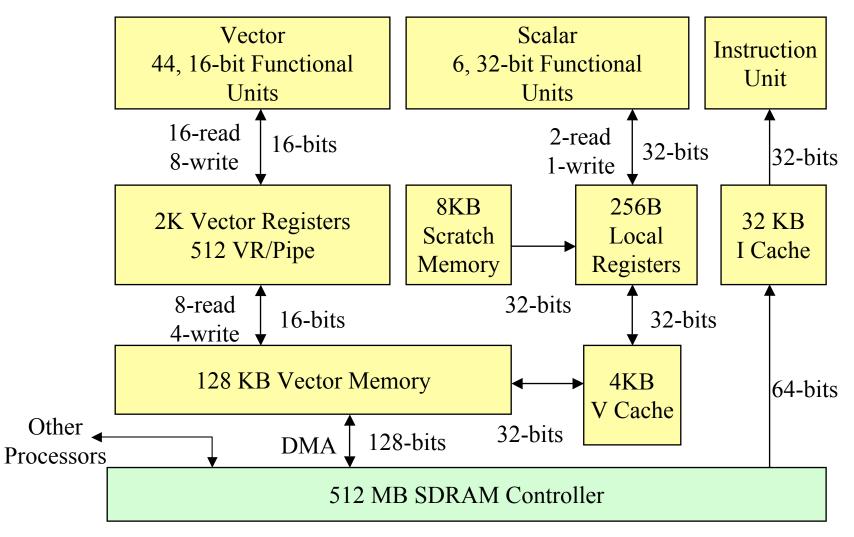
Telairity-1 I/O Architecture

Single Vector/Scalar Processor Features

- 4-vector pipes with independent hardware
- Independent Scalar Unit
- 128 KByte on-chip vector SRAM
- 4 KByte vector SRAM data cache
- 8 KByte scalar scratchpad memory
- 32 KByte instruction cache

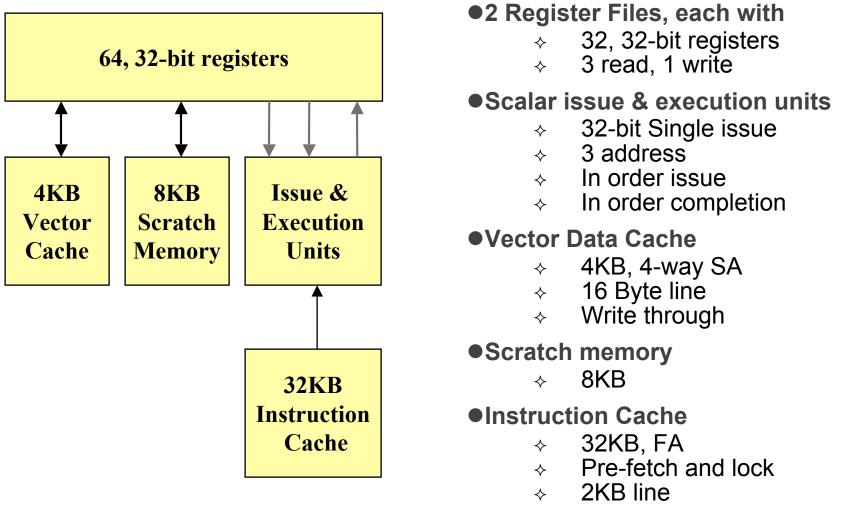
Telairity-1 Instructions

Scalar Instructions

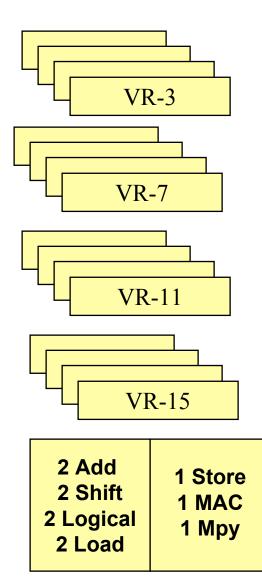

- Three-address scalar load and store instructions
- ♦ Memory addressing
 - Register, indexed, offset
 - Byte, doublet (2-bytes), quadlet (4-bytes)
- ♦ Arithmetic
 - Signed, unsigned, saturating
- ♦ Data types
 - 8/16/32-bit integer

Vector instructions

- Three-address vector load and store instructions
 - Vector length, vector starting address, chaining
- Memory addressing
 - Register, indexed, offset
 - Stride, skip
 - Byte, doublet
- ♦ Arithmetic
 - Signed, unsigned, saturating, carry in, mask
- ♦ Data types
 - 8/16-bit vector

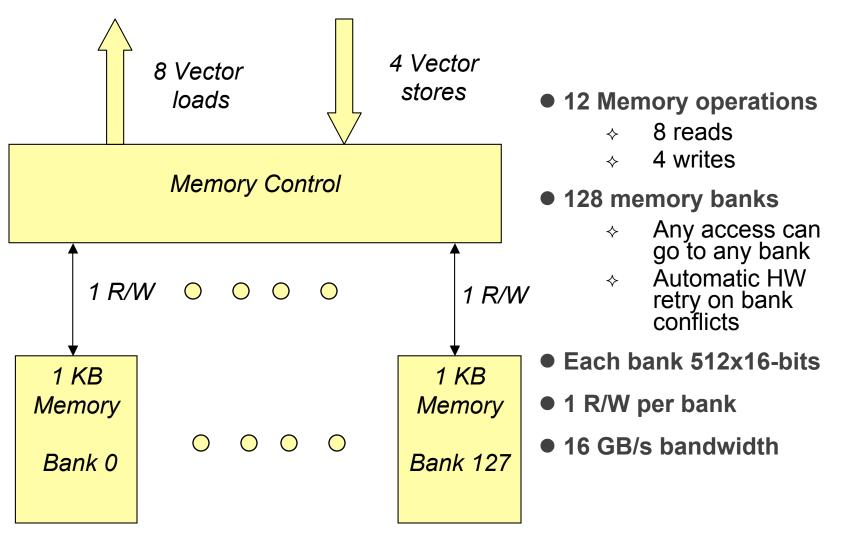


One of Five Identical Processors on Telairity-1



Scalar Unit Details

9


One Vector Pipe of A Four Pipe Unit

- •4 Vector pipes per processor
- •Data Paths per pipe
 - 4 reads, 2 writes
 - 2 loads,1 store
 - ♦ Issue in order
 - Out of order completion
- •16 Vector registers per pipe
 - Each vector register has 32, 16-bit elements
- •11 Functional units per pipe
- Adders
 - ♦ 8, 24-bit accumulators
- •MAC
 - ♦ 8, 40-bit accumulator

Processor VSRAM

REAL - TIME HD

11

Performance

• Vector & Scalar operations

- Four independent vector pipelines per processor
- One single issue scalar pipeline per processor

• Peak operations per cycle per processor

- ♦ 21, 16-bit operations per cycle
 - 8, 16-bit vector ops + 8 vector loads + 4 vector stores, 1, 32-bit scalar op

• Peak operations per cycle per chip

♦ 105, 16-bit operations per cycle

• Sustained operations per cycle per processor

- ♦ 666 sustained operations issued & completed in 40 cycles
- ♦ 16.65, 16-bit operations per cycle per processor
- Sustained operations per cycle per chip
 - ♦ 83, 16-bit operations per cycle
- 668.25 MHz clock rate
 - ♦ 9x multiple of 74.25MHz SMPTE 20 bit video standard
- Total Sustained Chip performance of 55.5 GOPS/s

H.264 Real Time HD Encoder Application: Comparison with other solutions

•Other Processors

- ♦ 16 to 20 DSP chips + 6 FPGAs
- ♦ 24 to 32 Multimedia chips + 6 FPGAs
- \diamond 10 to 12 x86 processors + 12 to 24 FPGAs
- Telairity-1
 - ♦ 4 to 8 Telairity-1 chips + 1 small FPGA
 - ♦ 668 MHz

Application Program Profile for Real Time HD Encoding

Telairity-1 H.264 programs	4 chips	8 chips
Motion Estimation	46%	55%
DCT & IDCT	3%	2%
Loop Filter	16%	8%
Binarization & context modeling	25%	10%
Headroom	10%	25%
Total	100%	100%

8 chips gives better quality or lower bit rate

Telairity-1 Chip Technology

Fujitsu 90nm CMOS technology

- ♦ 1.25 volt core, 1.8 volt I/O
- Die Size
 - ♦ 9.5mm x 14.4mm
 - ♦ 1156 FCBGA package
- Power
 - ♦ 15 Watts typical
- 88 Million Transistors
 - ♦ 41 Million RAM
 - ♦ 47 Million logic transistors

Chip Die Plot

Telairity-1 Silicon Status

- Chip taped out February '05
- First silicon May '05 and fully functional
- Speed
 - ♦ 668.25 MHz
- Software development system
 - \diamond 4 chips
 - ♦ Software tools
- Encoder development system
 - $\diamond \qquad 8 \ chips$
 - Encoder application software
 - ♦ Software tools
- Availability
 - Engineering Samples now
 - ♦ Production Q4 2005

www.telairity.com