
Zurich Research Laboratory

Hot Chips 17 August 2005 www.zurich.ibm.com

Jan van Lunteren

Ton Engbersen

High-Performance Pattern-Matching

Engine for Intrusion Detection

A New Approach for Fast Programmable Accelerators

2

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Agenda

1. Overview

2. Programmable State Machine

3. String Matching

4. Pattern Compiler

5. Regular Expressions

6. Experimental Results

7. Summary

3

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Overview
Patterns

 Strings, regular expressions

 Pattern conditions: case sensitivity, location in input stream, negation

 Multi-pattern conditions: order, distance

 Scalable to at least tens of thousands of patterns

 No basic limit on maximum pattern length (memory capacity)

Operation

 Deterministic processing rate, independent of input and number of patterns

 On-the-fly, single-pass processing of entire input stream(s)

 Detection of all patterns, including multiple occurrences and overlaps

 Dynamic updates of patterns by modifying memory contents

Performance

 Aggregate processing rate (single chip): 5-10 Gb/s (FPGA), >20 Gb/s (ASIC)

 Update time (insert/delete): approx. one millisecond per pattern

 Storage efficiency: 1,500 patterns / 25 K characters fit into <100 KB

4

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Pattern

Scanner
Scanner

Control

Off-chip
Memory

On-chip
Memory

Result

Processor

Off-chip
Memory

Block Diagram

match

results

input stream(s)

Pattern Compiler

patterns

conditions

HW

SW

pat.IDs

offsets

Scanner Control

 Session management

 Pattern subset selection

 Resource allocation

Pattern Scanner

 String matching

 Regular expressions

Result Processor

 Pattern conditions

• location, negation

• order, distance

 Output generation

Pattern Compiler

 Generation and dynamic

update of data structures

5

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Programmable State Machine

rule state input -> state priority
 R0 * * -> S0 0
 R1 * A -> S1 1
 R2 S1 B -> S2 2
 R3 S2 C -> S3 2

Example

 Detection of all occurrences of a

pattern ABC in the input stream

state transition diagram

 Can be described using state

transition rules involving wildcards and

priorities

 In each cycle, the highest-priority

transition rule matching the current

state and input is selected

state transition rules

B

A

C

A

A

A
A

A,C

A,B

A

S1

S0

S2

S3

6

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Programmable State Machine

Transition

Rule

Memory

Rule Selector

input

State

Register

output next state

transition rule vector

test part result part

B-FSM engine

B-FSM technology

 Based on BaRT routing-table search algorithm (hash function)

• 72K IPv4 prefixes in ~500 KB, ≤4 memory accesses per lookup

 Finds highest-priority matching rule in a single

clock cycle, at frequencies on the order of

100 MHz (FPGA) – 1 GHz (custom logic)

 High storage efficiency: typically linear

relation between storage requirements

and number of transition rules

 Scalable to hundreds of thousands

of states and transitions

 Supports wide input and output vectors

 Fast dynamic updates

conditions
next
state outputinput

current
state

hash
info

7

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Programmable State Machine

state transition diagram

BaRT-compressed

transition rule table

BaRT-compressed

transition rule table

BaRT-compressed

transition rule table

transition rule memory

Optimizations

 State transition diagram is divided into state clusters

 Clusters are mapped on BaRT-compressed transition-rule tables

 Optimized state encoding within each cluster

 High performance: simplified hash function enables small and fast B-FSM logic

 High storage efficiency: optimum filling of hash tables

cluster

cluster

cluster

8

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

R
e
s
u
lt
 P

ro
c
e
s
s
o
r

In
p
u
t

C
o
n
tr

o
lle

r

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Pattern Scanner

match

results

. . .

. . .

input

stream(s)

Array of B-FSM engines

 Increased performance: smaller

memories are faster

 Increased storage efficiency: selective

distribution of patterns over engines

(next slides)

 Increased flexibility: programmable

allocation of B-FSM engines to input

stream(s) and applications (next slides)

9

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

String Matching
 Example: detection of all occurrences

of the pattern ABC anywhere in the

input stream

 Pattern can be mapped directly on

transition rules (state transition

diagram is not necessary)

rule state input -> state prior.
 R0 * * -> S0 0
 R1 * A -> S1 1
 R2 S1 B -> S2 2
 R3 S2 C -> S3 2

 Avg. rules/character = 1.0

(not counting default rule)

state transition diagram

(for illustration only)

B

A

C

A

A

A
A

A,C

A,B

A

S1

S0

S2

S3

10

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

String Matching
 Example: detection of all occurrences

of the patterns testing and pattern

 Pattern conflicts: rules 15-17 handle

input streams containing testesting,

patesting or pattesting

 Avg. rules/character = 1.2

(“default” transitions to S0 are not shown)

state transition diagram

(for illustration only)

rule state input -> state prior.
R0 * * -> S0 0
R1 * t -> S1 1
R2 S1 e -> S2 2
R3 S2 s -> S3 2
R4 S3 t -> S4 2
R5 S4 i -> S5 2
R6 S5 n -> S6 2
R7 S6 g -> S7 2
R8 * p -> S8 1
R9 S8 a -> S9 2
R10 S9 t -> S10 2
R11 S10 t -> S11 2
R12 S11 e -> S12 2
R13 S12 r -> S13 2
R14 S13 n -> S14 2
R15 S4 e -> S2 2
R16 S10 e -> S2 2
R17 S12 s -> S3 2

ae

t

t

e

r

n

p

p

p

p

p

p

s

t

i

n

g

t
t

t

t

t

p

t

t p

t

t

t

p

p

p

p

p

tp

pt

S9

S10

S11

S12

S13

S0

S2

S3

S4

S5

S6

S7 S14

S8S1

e

s

e

11

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

String Matching
 Example: detection of all occurrences

of the patterns testing and testcase

 Common prefix test: rules 1-4 are

shared by both patterns

 Avg. rules/character = 0.8

(for illustration only)

rule state input -> state prior.
R0 * * -> S0 0
R1 * t -> S1 1
R2 S1 e -> S2 2
R3 S2 s -> S3 2
R4 S3 t -> S4 2
R5 S4 i -> S5 2
R6 S5 n -> S6 2
R7 S6 g -> S7 2
R8 S4 c -> S8 2
R9 S8 a -> S9 2
R10 S9 s -> S10 2
R11 S10 e -> S11 2
R12 S4 e -> S2 2

a

s

t
t

t

t

t

e

g

n

t

t

t

e

i c

t

t

S1

S0

S2

S3

S4

S8

S9

S5

S6

S10S7

S11

t

e

s

t

(“default” transitions to S0 are not shown)

12

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

R
e
s
u
lt
 P

ro
c
e
s
s
o
r

In
p
u
t
C

o
n
tr

o
ll
e
r

Pattern Compiler

Pattern Distributor

patterns

Transition Rule

Generator

B-FSM Compiler

. . .

Overview of Operation

 Pattern distributor distributes patterns over

multiple pattern sets, based on pattern

properties (conflicts, overlaps)

 Transition rule generator converts each

pattern set into state transition rules,

resolving intra/inter-pattern conflicts

 B-FSM compiler converts transition rules into

B-FSM data structures using state clustering,

state encoding, and BaRT compression

 Each step supports incremental updates

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

match

results

. . .

. . .

input

stream(s)

. . .

. . .

pattern scanner

pattern sets

transition rule sets

B-FSM data structures

13

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

3.3 B

3.4 B

4.0 B

4.7 B

6.0 B

7.4 B

mem/char

 (92 KB)83 KB0.7518.9 K16

(152 KB)149 KB1.2732.1 K6

 (93 KB)82 KB0.7418.8 K20

(104 KB)99 KB0.8722.0 K12

(120 KB)

(188 KB)

(allocated1)

25.8 K

39.5 K

trans. rules

116 KB1.028

183 KB1.574

memoryrules/char# B-FSMs

Pattern Compiler Performance

Experiment

 1.5 K strings / 25 K characters (case-insens.) extracted from Snort® rules (2004)

 Pattern length 1-100 characters; average: 16 characters

 Memory is allocated in buffers of ~1 KB (1 includes free space for additional rules)

60 B

154 B

1.6 KB

2.8 KB

mem/char

29.1 MBWu-Manber

1.1 MBpath-compr. Aho-Cor.

2.8 MBbitmap-compr. Aho-Cor.

53.1 MBAho-Corasick

memoryMethod

Comparison
 Based on: N.Tuck et al.,

“Deterministic memory-efficient
string matching algorithms for
intrusion detection,” Infocom’04

 1.5 K strings / 20 K characters

(Snort® rules, 2003)
Snort is a registered trademark of Sourcefire, Inc.

14

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Regular Expressions
 Example: detection of all matches of

regular expressions AB[D|E] and AB*C

rule state input -> state prior.
 R0 * * -> S0 0
 R1 * A -> S1 1
 R2 S1 B -> S2 2
 R3 S2 B -> S4 2
 R4 S4 B -> S4 2
 R5 S2 D -> S3 2
 R6 S2 E -> S3 2
 R7 S1 C -> S5 2
 R8 S2 C -> S5 2
 R9 S4 C -> S5 2

Advanced Support

 Enhanced B-FSMs provide efficient support for

– character classes

– counters

state transition diagram

(for illustration only)

A

BA
A

C

C

DE CB

B

A

A

A

S0

S1

S5

S4

S2

S3

(“default” transitions to S0 are not shown)

15

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

FPGA Implementation

 Xilinx® Virtex-4TM technology

– two B-FSMs per dual-port transition rule memory

– one transition per clock cycle @ 125 MHz

– one input byte per transition

 Two independent pattern-matching channels

 per transition rule memory, each running at 1 Gb/s

Configuration options (example)

 Assuming linear storage increase

– each 100 KB can hold ~ 1.5 K patterns / 25 K characters

 A single-chip FPGA with 400 KB transition rule memory can hold:

B-FSM logic

Experimental Results

Transition
Rule

Memory

B-FSM logic

input stream 1

input stream 2

2

4

8

channels

2 Gb/s

4 Gb/s

8 Gb/s

throughput

50 K3 K2

100 K

25 K

characters

6 K1

1.5 K4

patterns
copies of

data structure

Xilinx and Virtex-4 are registered trademarks of Xilinx, Inc.

16

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Summary
Novel Concept

 The problem of simultaneously detecting thousands of patterns in an input

stream can be mapped very efficiently on transition rules involving wildcard

conditions and priorities

Pattern Compiler

 Maps patterns on transition rules

 Converts transition rules into hash-table structures executed directly in HW

 Optimizes at the level of transition rules and hash tables

Pattern-Matching Engine

 Deterministic processing rate, independent of input and number of patterns

• 5-10 Gb/s (FPGA), >20 Gb/s (ASIC)

 High storage efficiency: 1,500 patterns / 25 K characters fit into <100 KB

 Fast incremental updates: approx. one millisecond per pattern

 Scalable to at least - tens of thousands of patterns

- hundreds of thousands of characters

B-FSM Technology

 Enables fast programmable accelerators for a wide range of applications

17

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

For more information, contact:

Jan van Lunteren (jvl@zurich.ibm.com)

Ton Engbersen (apj@zurich.ibm.com)

IBM Research GmbH

Zurich Research Laboratory

Säumerstrasse 4

CH-8803 Rüschlikon

Switzerland

Phone: +41 44 724 8111

Fax: +41 44 724 8911

18

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Backup

19

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Counter

Array

State

Register

Rule Selector

Regular Expressions

current
state

transition rule vector

test part result part

Transition

Rule

Memory

input

output

B-FSM engine

Classifier

counter

status

counter

control

class

Classifier

 Classifies input into (programmable)

sets of character classes that can be

tested by transition rules

 Examples:
\d numeric

\w alphanumeric

\s whitespace

Counter support

 Transition rules include field for counter

control (reset, load, increment, decrement)

 Condition field includes bits

for testing counter status

 B-FSM support for wide

 input and output vectors

input or
class

conditions
next
state

output
counter
control

hash
info

next state

20

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Publications
BaRT

 J. van Lunteren and A.P.J. Engbersen, “Fast and scalable packet

classification,” IEEE Journal of Selected Areas in Communications,

vol. 21, no. 4, pp. 560-571, May 2003.

 J. van Lunteren, “Searching very large routing tables in wide

embedded memory,” Proceedings of IEEE GLOBECOM,

vol. 3, pp. 1615-1619, November 2001.

B-FSM

 J. van Lunteren et al., “XML accelerator engine,”

First Int. Workshop on High Performance XML Processing,

in conjunction with WWW2004, May 2004.

