
Zurich Research Laboratory

Hot Chips 17 August 2005 www.zurich.ibm.com

Jan van Lunteren

Ton Engbersen

High-Performance Pattern-Matching

Engine for Intrusion Detection

A New Approach for Fast Programmable Accelerators

2

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Agenda

1. Overview

2. Programmable State Machine

3. String Matching

4. Pattern Compiler

5. Regular Expressions

6. Experimental Results

7. Summary

3

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Overview
Patterns

 Strings, regular expressions

 Pattern conditions: case sensitivity, location in input stream, negation

 Multi-pattern conditions: order, distance

 Scalable to at least tens of thousands of patterns

 No basic limit on maximum pattern length (memory capacity)

Operation

 Deterministic processing rate, independent of input and number of patterns

 On-the-fly, single-pass processing of entire input stream(s)

 Detection of all patterns, including multiple occurrences and overlaps

 Dynamic updates of patterns by modifying memory contents

Performance

 Aggregate processing rate (single chip): 5-10 Gb/s (FPGA), >20 Gb/s (ASIC)

 Update time (insert/delete): approx. one millisecond per pattern

 Storage efficiency: 1,500 patterns / 25 K characters fit into <100 KB

4

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Pattern

Scanner
Scanner

Control

Off-chip
Memory

On-chip
Memory

Result

Processor

Off-chip
Memory

Block Diagram

match

results

input stream(s)

Pattern Compiler

patterns

conditions

HW

SW

pat.IDs

offsets

Scanner Control

 Session management

 Pattern subset selection

 Resource allocation

Pattern Scanner

 String matching

 Regular expressions

Result Processor

 Pattern conditions

• location, negation

• order, distance

 Output generation

Pattern Compiler

 Generation and dynamic

update of data structures

5

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Programmable State Machine

rule state input -> state priority
 R0 * * -> S0 0
 R1 * A -> S1 1
 R2 S1 B -> S2 2
 R3 S2 C -> S3 2

Example

 Detection of all occurrences of a

pattern ABC in the input stream

state transition diagram

 Can be described using state

transition rules involving wildcards and

priorities

 In each cycle, the highest-priority

transition rule matching the current

state and input is selected

state transition rules

B

A

C

A

A

A
A

A,C

A,B

A

S1

S0

S2

S3

6

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Programmable State Machine

Transition

Rule

Memory

Rule Selector

input

State

Register

output next state

transition rule vector

test part result part

B-FSM engine

B-FSM technology

 Based on BaRT routing-table search algorithm (hash function)

• 72K IPv4 prefixes in ~500 KB, ≤4 memory accesses per lookup

 Finds highest-priority matching rule in a single

clock cycle, at frequencies on the order of

100 MHz (FPGA) – 1 GHz (custom logic)

 High storage efficiency: typically linear

relation between storage requirements

and number of transition rules

 Scalable to hundreds of thousands

of states and transitions

 Supports wide input and output vectors

 Fast dynamic updates

conditions
next
state outputinput

current
state

hash
info

7

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Programmable State Machine

state transition diagram

BaRT-compressed

transition rule table

BaRT-compressed

transition rule table

BaRT-compressed

transition rule table

transition rule memory

Optimizations

 State transition diagram is divided into state clusters

 Clusters are mapped on BaRT-compressed transition-rule tables

 Optimized state encoding within each cluster

 High performance: simplified hash function enables small and fast B-FSM logic

 High storage efficiency: optimum filling of hash tables

cluster

cluster

cluster

8

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

R
e
s
u
lt
 P

ro
c
e
s
s
o
r

In
p
u
t

C
o
n
tr

o
lle

r

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Pattern Scanner

match

results

. . .

. . .

input

stream(s)

Array of B-FSM engines

 Increased performance: smaller

memories are faster

 Increased storage efficiency: selective

distribution of patterns over engines

(next slides)

 Increased flexibility: programmable

allocation of B-FSM engines to input

stream(s) and applications (next slides)

9

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

String Matching
 Example: detection of all occurrences

of the pattern ABC anywhere in the

input stream

 Pattern can be mapped directly on

transition rules (state transition

diagram is not necessary)

rule state input -> state prior.
 R0 * * -> S0 0
 R1 * A -> S1 1
 R2 S1 B -> S2 2
 R3 S2 C -> S3 2

 Avg. rules/character = 1.0

(not counting default rule)

state transition diagram

(for illustration only)

B

A

C

A

A

A
A

A,C

A,B

A

S1

S0

S2

S3

10

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

String Matching
 Example: detection of all occurrences

of the patterns testing and pattern

 Pattern conflicts: rules 15-17 handle

input streams containing testesting,

patesting or pattesting

 Avg. rules/character = 1.2

(“default” transitions to S0 are not shown)

state transition diagram

(for illustration only)

rule state input -> state prior.
R0 * * -> S0 0
R1 * t -> S1 1
R2 S1 e -> S2 2
R3 S2 s -> S3 2
R4 S3 t -> S4 2
R5 S4 i -> S5 2
R6 S5 n -> S6 2
R7 S6 g -> S7 2
R8 * p -> S8 1
R9 S8 a -> S9 2
R10 S9 t -> S10 2
R11 S10 t -> S11 2
R12 S11 e -> S12 2
R13 S12 r -> S13 2
R14 S13 n -> S14 2
R15 S4 e -> S2 2
R16 S10 e -> S2 2
R17 S12 s -> S3 2

ae

t

t

e

r

n

p

p

p

p

p

p

s

t

i

n

g

t
t

t

t

t

p

t

t p

t

t

t

p

p

p

p

p

tp

pt

S9

S10

S11

S12

S13

S0

S2

S3

S4

S5

S6

S7 S14

S8S1

e

s

e

11

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

String Matching
 Example: detection of all occurrences

of the patterns testing and testcase

 Common prefix test: rules 1-4 are

shared by both patterns

 Avg. rules/character = 0.8

(for illustration only)

rule state input -> state prior.
R0 * * -> S0 0
R1 * t -> S1 1
R2 S1 e -> S2 2
R3 S2 s -> S3 2
R4 S3 t -> S4 2
R5 S4 i -> S5 2
R6 S5 n -> S6 2
R7 S6 g -> S7 2
R8 S4 c -> S8 2
R9 S8 a -> S9 2
R10 S9 s -> S10 2
R11 S10 e -> S11 2
R12 S4 e -> S2 2

a

s

t
t

t

t

t

e

g

n

t

t

t

e

i c

t

t

S1

S0

S2

S3

S4

S8

S9

S5

S6

S10S7

S11

t

e

s

t

(“default” transitions to S0 are not shown)

12

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

R
e
s
u
lt
 P

ro
c
e
s
s
o
r

In
p
u
t
C

o
n
tr

o
ll
e
r

Pattern Compiler

Pattern Distributor

patterns

Transition Rule

Generator

B-FSM Compiler

. . .

Overview of Operation

 Pattern distributor distributes patterns over

multiple pattern sets, based on pattern

properties (conflicts, overlaps)

 Transition rule generator converts each

pattern set into state transition rules,

resolving intra/inter-pattern conflicts

 B-FSM compiler converts transition rules into

B-FSM data structures using state clustering,

state encoding, and BaRT compression

 Each step supports incremental updates

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

Memory

B-FSM

match

results

. . .

. . .

input

stream(s)

. . .

. . .

pattern scanner

pattern sets

transition rule sets

B-FSM data structures

13

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

3.3 B

3.4 B

4.0 B

4.7 B

6.0 B

7.4 B

mem/char

 (92 KB)83 KB0.7518.9 K16

(152 KB)149 KB1.2732.1 K6

 (93 KB)82 KB0.7418.8 K20

(104 KB)99 KB0.8722.0 K12

(120 KB)

(188 KB)

(allocated1)

25.8 K

39.5 K

trans. rules

116 KB1.028

183 KB1.574

memoryrules/char# B-FSMs

Pattern Compiler Performance

Experiment

 1.5 K strings / 25 K characters (case-insens.) extracted from Snort® rules (2004)

 Pattern length 1-100 characters; average: 16 characters

 Memory is allocated in buffers of ~1 KB (1 includes free space for additional rules)

60 B

154 B

1.6 KB

2.8 KB

mem/char

29.1 MBWu-Manber

1.1 MBpath-compr. Aho-Cor.

2.8 MBbitmap-compr. Aho-Cor.

53.1 MBAho-Corasick

memoryMethod

Comparison
 Based on: N.Tuck et al.,

“Deterministic memory-efficient
string matching algorithms for
intrusion detection,” Infocom’04

 1.5 K strings / 20 K characters

(Snort® rules, 2003)
Snort is a registered trademark of Sourcefire, Inc.

14

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Regular Expressions
 Example: detection of all matches of

regular expressions AB[D|E] and AB*C

rule state input -> state prior.
 R0 * * -> S0 0
 R1 * A -> S1 1
 R2 S1 B -> S2 2
 R3 S2 B -> S4 2
 R4 S4 B -> S4 2
 R5 S2 D -> S3 2
 R6 S2 E -> S3 2
 R7 S1 C -> S5 2
 R8 S2 C -> S5 2
 R9 S4 C -> S5 2

Advanced Support

 Enhanced B-FSMs provide efficient support for

– character classes

– counters

state transition diagram

(for illustration only)

A

BA
A

C

C

DE CB

B

A

A

A

S0

S1

S5

S4

S2

S3

(“default” transitions to S0 are not shown)

15

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

FPGA Implementation

 Xilinx® Virtex-4TM technology

– two B-FSMs per dual-port transition rule memory

– one transition per clock cycle @ 125 MHz

– one input byte per transition

 Two independent pattern-matching channels

 per transition rule memory, each running at 1 Gb/s

Configuration options (example)

 Assuming linear storage increase

– each 100 KB can hold ~ 1.5 K patterns / 25 K characters

 A single-chip FPGA with 400 KB transition rule memory can hold:

B-FSM logic

Experimental Results

Transition
Rule

Memory

B-FSM logic

input stream 1

input stream 2

2

4

8

channels

2 Gb/s

4 Gb/s

8 Gb/s

throughput

50 K3 K2

100 K

25 K

characters

6 K1

1.5 K4

patterns
copies of

data structure

Xilinx and Virtex-4 are registered trademarks of Xilinx, Inc.

16

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Summary
Novel Concept

 The problem of simultaneously detecting thousands of patterns in an input

stream can be mapped very efficiently on transition rules involving wildcard

conditions and priorities

Pattern Compiler

 Maps patterns on transition rules

 Converts transition rules into hash-table structures executed directly in HW

 Optimizes at the level of transition rules and hash tables

Pattern-Matching Engine

 Deterministic processing rate, independent of input and number of patterns

• 5-10 Gb/s (FPGA), >20 Gb/s (ASIC)

 High storage efficiency: 1,500 patterns / 25 K characters fit into <100 KB

 Fast incremental updates: approx. one millisecond per pattern

 Scalable to at least - tens of thousands of patterns

- hundreds of thousands of characters

B-FSM Technology

 Enables fast programmable accelerators for a wide range of applications

17

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

For more information, contact:

Jan van Lunteren (jvl@zurich.ibm.com)

Ton Engbersen (apj@zurich.ibm.com)

IBM Research GmbH

Zurich Research Laboratory

Säumerstrasse 4

CH-8803 Rüschlikon

Switzerland

Phone: +41 44 724 8111

Fax: +41 44 724 8911

18

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Backup

19

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Counter

Array

State

Register

Rule Selector

Regular Expressions

current
state

transition rule vector

test part result part

Transition

Rule

Memory

input

output

B-FSM engine

Classifier

counter

status

counter

control

class

Classifier

 Classifies input into (programmable)

sets of character classes that can be

tested by transition rules

 Examples:
\d numeric

\w alphanumeric

\s whitespace

Counter support

 Transition rules include field for counter

control (reset, load, increment, decrement)

 Condition field includes bits

for testing counter status

 B-FSM support for wide

 input and output vectors

input or
class

conditions
next
state

output
counter
control

hash
info

next state

20

Zurich Research Laboratory

Hot Chips 17 © 2005 IBM Corporation

Publications
BaRT

 J. van Lunteren and A.P.J. Engbersen, “Fast and scalable packet

classification,” IEEE Journal of Selected Areas in Communications,

vol. 21, no. 4, pp. 560-571, May 2003.

 J. van Lunteren, “Searching very large routing tables in wide

embedded memory,” Proceedings of IEEE GLOBECOM,

vol. 3, pp. 1615-1619, November 2001.

B-FSM

 J. van Lunteren et al., “XML accelerator engine,”

First Int. Workshop on High Performance XML Processing,

in conjunction with WWW2004, May 2004.

