Zurich Research Laboratory

-

-~
-

£ i
Y
A
*5 «

"

High-Performance Pattern-Matchin ' _ 7_;; L
Engine for Intrusion Detection

-

A New Approach for Fast Programmable Accelerators

AT
c.k'.&'-'

Jan van Lunteren
Ton Engbersen

Hot Chips 17 August 2005 www.zurich.ibm.com

Zurich Research Laboratory

Agenda

~N OO O A W N -

. Overview

. Programmable State Machine
. String Matching

. Pattern Compiler

. Regular Expressions

. Experimental Results

. Summary

Hot Chips 17

© 2005 IBM Corporation

Zurich Research Laboratory

Overview

Patterns

= Strings, regular expressions

= Pattern conditions: case sensitivity, location in input stream, negation
= Multi-pattern conditions: order, distance

= Scalable to at least tens of thousands of patterns

= No basic limit on maximum pattern length (memory capacity)

Operation

= Deterministic processing rate, independent of input and number of patterns
= On-the-fly, single-pass processing of entire input stream(s)

= Detection of all patterns, including multiple occurrences and overlaps

= Dynamic updates of patterns by modifying memory contents

Performance

= Aggregate processing rate (single chip): 5-10 Gb/s (FPGA), >20 Gb/s (ASIC)
= Update time (insert/delete): approx. one millisecond per pattern

= Storage efficiency: 1,500 patterns / 25 K characters fit into <100 KB

3 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Block Diagram

Scanner Control

= Session management
= Pattern subset selection input stream(s)
= Resource allocation |

Pattern Scanner
= String matching
= Regular expressions

Result Processor

= Pattern conditions
* location, negation
« order, distance

= QOutput generation

Pattern Compiler
= Generation and dynamic

patterns
update of data structures conditions

Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Programmable State Machine

Example
= Detection of all occurrences ofa = Can be described using state
pattern ABC in the input stream transition rules involving wildcards and

priorities
= In each cycle, the highest-priority

transition rule matching the current
state and input is selected

rule state input -> state priority

RO * * -> SO 0
R1 * A -> S1 1
R2 S1 B -> S2 2
R3 S2 C -> S3 2

state transition rules

State transition diagram

5 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Programmable State Machine

B-FSM technology
= Based on BaRT routing-table search algorithm (hash function)
« 72K IPv4 prefixes in ~500 KB, <4 memory accesses per lookup

= Finds highest-priority matching rule in a single input
clock cycle, at frequencies on the order of
100 MHz (FPGA) — 1 GHz (custom logic)

= High storage efficiency: typically linear
relation between storage requirements
and number of transition rules

= Scalable to hundreds of thousands

of states and transitions output nexi state
= Supports wide input and output vectors B-FSM engine
= Fast dynamic updates test part result part
Cg{;?g E input ‘conditions‘ thﬁ output‘ r:ﬁ%‘

transition rule vector

6 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Programmable State Machine

cluster

cluster

cluster

State transition diagram transition rule memory

Optimizations

= State transition diagram is divided into state clusters

= Clusters are mapped on BaRT-compressed transition-rule tables
= Optimized state encoding within each cluster

I~ High performance: simplified hash function enables small and fast B-FSM logic
1" High storage efficiency: optimum filling of hash tables

7 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Pattern Scanner

match

input
results

stream(s)

| \

Array of B-FSM engines
= Increased performance: smaller = Increased flexibility: programmable
memories are faster allocation of B-FSM engines to input

= Increased storage efficiency: selective stream(s) and applications (next slides)

distribution of patterns over engines
(next slides)

8 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

String Matching

= Example: detection of all occurrences
of the pattern ABC anywhere in the
input stream

= Pattern can be mapped directly on
transition rules (state transition
diagram is not necessary)

rule state input -> state prior.

RO * * -> SO 0
R1 * A -> S1 1
R2 S1 B -> S2 2
R3 S2 C -> S3 2

State transition diagram
= Avg. rules/character = 1.0 (for illustration only)

(not counting default rule)

9 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Stn ng M atCh | n g (“default’ transitions to SO are not shown)

= Example: detection of all occurrences
of the patterns festing and pattern

rule state input -> state prior.
*

RO * -> S0 0
R1 * t -> 81 1
R2 s1 e -> 82 2
R3 S2 s -> 83 2
R4 S3 t -> sS4 2
R5 sS4 i -> 85 2
R6 S5 n -> S6 2
R7 S6 g -> 87 2
RS * p -> S8 1
RO S8 a -> 89 2
R10 S9 t -> 810 2
R11 S10 t =-> S11 2
R12 S11 e =-> 8S12 2
R13 S12 r =-> S13 2
R%g 831.3 n -> 3%4 %
R S e -> S

[==° R16 S10 e -> S2 2
R17 S12 s -> 83 2

= Pattern conflicts: rules 15-17 handle
input streams containing testesting,
patesting or pattesting

state transition diagram
= Avg. rules/character = 1.2 (for illustration only)

10 Hot Chips 17 © 2005 IBM Corporation

rule state input
RO * *
R1 * t
R2 S1 e
I R3 2 ¢
R4 S3 t
R5 S4 i
R6 S5 n
R7 S6 g
RS8 S4 c
R9 S8 a
R10 S9 s
R1l1 S10 e
R12 S4 e

Zurich Research Laboratory

String Matching

= Example: detection of all occurrences
of the patterns festing and testcase

-> state prior.

SO
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S2

NNMDNMNNDNMNDNMDNMNDNMDNMNMNDNRO

= Common prefix test: rules 1-4 are

shared by both patterns

= Avg. rules/character = 0.8

Hot Chips 17

(“default’ transitions to SO are not shown)

i c
@ @
n a
© ©
g s
© @

e
@

(for illustration only)

© 2005 IBM Corporation

Zurich Research Laboratory

Pattern Compiler

Overview of Operation

Pattern distributor distributes patterns over
multiple pattern sets, based on pattern
properties (conflicts, overlaps)

Transition rule generator converts each
pattern set into state transition rules,
resolving intra/inter-pattern conflicts

B-FSM compiler converts transition rules into
B-FSM data structures using state clustering,
state encoding, and BaRT compression

Each step supports incremental updates

Hot Chips 17

input
stream(s)
___»

patterns

transition rule sets

B-FSM data structures

match

results
»

4
4

pattern scanner

© 2005 IBM Corporation

Zurich Research Laboratory

Pattern Compiler Performance

B-FSMs trans. rules rules/char memory (allocated?) mem/char
4 39.5K 1.57 183 KB (188 KB) 7.4 B
6 321K 1.27 149 KB (152 KB) 6.0 B
8 25.8 K 1.02 116 KB (120 KB) 4.7B
12 220K 0.87 99 KB (104 KB) 4.08B
16 18.9 K 0.75 83 KB (92 KB) 3.4B
20 18.8 K 0.74 82 KB (93 KB) 3.3B
Experiment

= 1.5 K strings / 25 K characters (case-insens.) extracted from Snort® rules (2004)
= Pattern length 1-100 characters; average: 16 characters
= Memory is allocated in buffers of ~1 KB (1 includes free space for additional rules)

Comparison

= Based on: N.Tuck et al., Method memory | mem/char
‘Deterministic memory-efficient Aho-Corasick 53.1MB| 2.8KB
string matching algorithms for Wu-Manber 29.1MB| 1.6 KB
intrusion detection,” Infocom’04 bitmap-compr. Aho-Cor.| 2.8 MB | 154 B

= 1.5 K strings / 20 K characters path-compr. Aho-Cor. 1.1MB| 60B

(Snort® rules, 2003)

Snort is a registered trademark of Sourcefire, Inc.
13 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Regular Expressions

(“default’ transitions to SO are not shown)

= Example: detection of all matches of

regular expressions AB[D|E] and AB*C

A

rule state input -> state prior.

RO * -> S0 0

R1 * A -> s1 1 A

R2 S1 B -> 82 2

R3 S2 B -> S4 2 BA oA

R4 sS4 B -> S4 2

R5 S2 D -> S3 2

R6 S2 E -> S3 2

R7 S1 c -> 85 2

RS S2 c -> 85 2

R9 s4 cC -> 85 2

state transition diagram

Advanced Support (for illustration only)

= Enhanced B-FSMs provide efficient support for
— character classes

— counters

Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Experimental Results

FPGA Implementation input stream 1
- Xilinx® Virtex-4™ technology #
— two B-FSMs per dual-port transition rule memory : 2

— one transition per clock cycle @ 125 MHz i} :
— one input byte per transition Tr‘]‘{‘jl'gon
I~ Two independent pattern-matching channels Memory
per transition rule memory, each running at 1 Gb/s i}
B-FSM logic
Configuration options (example) 1T

: : : input stream 2
= Assuming linear storage increase P

— each 100 KB can hold ~ 1.5 K patterns / 25 K characters
= A single-chip FPGA with 400 KB transition rule memory can hold:

dgtgosgiﬁital;e patterns characters | # channels | throughput
4 1.5K 25K 8 8 Gb/s
2 3 K 50 K 4 4 Gb/s
1 6 K 100 K 2 2 Gb/s

Xilinx and Virtex-4 are registered trademarks of Xilinx, Inc.
15 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Summary

Novel Concept

= The problem of simultaneously detecting thousands of patterns in an input
stream can be mapped very efficiently on transition rules involving wildcard
conditions and priorities

Pattern Compiler

= Maps patterns on transition rules

= Converts transition rules into hash-table structures executed directly in HW
= Optimizes at the level of transition rules and hash tables

Pattern-Matching Engine
= Deterministic processing rate, independent of input and number of patterns
« 5-10 Gb/s (FPGA), >20 Gb/s (ASIC)
= High storage efficiency: 1,500 patterns / 25 K characters fit into <100 KB
= Fast incremental updates: approx. one millisecond per pattern
= Scalable to at least - tens of thousands of patterns
- hundreds of thousands of characters

B-FSM Technology
= Enables fast programmable accelerators for a wide range of applications

16 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

For more information, contact:

Jan van Lunteren (jvi@zurich.ibm.com)
Ton Engbersen (apj@zurich.ibm.com)

IBM Research GmbH
Zurich Research Laboratory
Saumerstrasse 4

CH-8803 Ruschlikon
Switzerland

Phone: +41 44 724 8111
Fax: +41 44 724 8911

Hot Chips 17

© 2005 IBM Corporation

Zurich Research Laboratory

Backup

18 Hot Chips 17 © 2005 IBM Corporation

Zurich Research Laboratory

Reg \ l ar EX p ress I ons et counter counter
Classifier status control

—

= Classifies input into (programmable)
sets of character classes that can be
tested by transition rules

= Examples:
\d numeric
\w alphanumeric
\s whitespace

next state

Counter support
= Transition rules include field for counter output

control (reset, load, increment, decrement) B-FSM engine
= Condition field includes bits

for testing counter status

test part result part

' - i current [input or " next counter| hash

1= B-FSM support for wide St | s cond|t|ons‘ state ‘ Sl ‘ control | info ‘

input and output vectors »
transition rule vector

19 Hot Chips 17 © 2005 IBM Corporation

20

Zurich Research Laboratory

Publications

BaRT
= J. van Lunteren and A.P.J. Engbersen, “Fast and scalable packet
classification,” IEEE Journal of Selected Areas in Communications,

vol. 21, no. 4, pp. 560-571, May 2003.

= J. van Lunteren, “Searching very large routing tables in wide
embedded memory,” Proceedings of IEEE GLOBECOM,
vol. 3, pp. 1615-1619, November 2001.

B-FSM

= J. van Lunteren et al., “XML accelerator engine,”
First Int. Workshop on High Performance XML Processing,
in conjunction with WWW2004, May 2004.

Hot Chips 17 © 2005 IBM Corporation

