

Barcelona: a Fibre Channel Switch SoC for Enterprise SANs

Nital P. Patwa

Hardware Engineering Manager/Technical Leader

Agenda

- Introduction to Fibre Channel Switching in Enterprise SANs
- Barcelona Switch-On-a-Chip Architecture
- Advanced Features
- Implementation and Lab Testing
- Summary
- Q&A

Fibre Channel Switch

Cisco.com

- Storage Area Networks (SAN) based on Fibre Channel protocol revolutionized the way storage was connected to the servers
- FC defined both Arbitrated Loop & Switch topologies
- Modern day SANs are switch based, with arbitrated loop being used in storage arrays
- SAN Address Space: 3-byte address dynamically assigned at login time

Switch-based SAN

Fibre Channel Switch

- Port Types: F(switch), FL(arbitrated loop) or E (ISL)
- 1G/2G/4G (similar to 10/100/1000), Also 10G and 8G
- All links have flow control based on buffer to buffer credit scheme
- Each credit allows transmission of a frame up to its max size (~2200 bytes)
- No WRED drop. Only timeouts or errors cause drop
- Amount of buffering required is much smaller than in ethernet switches
- Requires elaborate Congestion Control scheme

Barcelona-based 32-port Switch

- 16 FC Ports and 16 proxy ports to form a 32-port non-blocking switch with 2 Barcelonas
- 320 Buffers allowing 16 credits for F and 60 for E
- 64 Gb Shared-Memory Switching Fabric
- Cut-through and Store-Forward modes
- Virtual SAN Support
- Zoning ACL Support
- FC-AL intelligent frame ordering

Major Blocks

Switching across Barcelona

- Requests from Barcelona B0 go to Arbiter in Barcelona B1
- Grants are sent to the fabric in B0 and B1
- Fabric in B0 will schedule the packet to arrive on DDR port
- Fabric in B1 will see the remote descriptor
- Fabric in B1 will schedule a bypass from the DDR port to the FC port

Switching Fabric

- Shared Memory Fabric with TDM access for 33 ports
- Dual-ported header ram doubles the bandwidth for short packets
- Line buffers and Pods simplify physical design

Fabric BW Analysis

Cisco.com

Director-class features in 1 RU form-factor

- 4K Virtual SANs with inter-VSAN routing support
- Multipath Forwarding and Port Channels
- Spanning with fine-grain filter
- Fibre Channel to MPLS tunneling for remote span
- Fibre Channel congestion detection and avoidance
- Fibre Channel Trace Route

Virtual SANs (VSANs)

 Overlay isolated virtual fabrics on same physical infrastructure

> Each VSAN contains zones and separate (replicated) fabric services

VSAN membership determined by port

- Eliminates costs associated with separate physical fabrics
- VSANs for availability

Isolate virtual fabrics from fabric-wide faults/reconfigurations

Security •

Complete hardware isolation

Scalability •

> **Replicated fabric services** Thousands of VSANs per storage network

Department/

Customer 'A'

Cisco.com

Customer 'B'

Intelligent Network Services— Multipath Forwarding and PortChannel

- Optimize use of fabric
- Port Channel: Bundle up to 8 links for aggregate of 16Gbps
- Multipath: Utilize up to 16 equal-cost paths
- Hardware-based intelligent load distribution

Spanning – A Diagnostic Tool

Time

Cisco.com

 Spanning gives capability to intelligently observe traffic

9 7.000007	ff.ff.fd	ff.ff.fd	FC SW_ILS	Build Fabric
10 8.000008	ff.ff.fd	ff.ff.fd	FC	Link Ctl, ACK1
11 9.000009	ff.ff.fd	ff.ff.fd	SW_ILS	SW_ACC (Build Fabric)
12 10.000010	ff.ff.fd	ff.ff.fd	FC	Link Ctl, ACK1
13 11.000011	ff.ff.fd	ff.ff.fd	SW_ILS	FSPF: Hello
14 12.000012	ff.ff.fd	ff.ff.fd	FC	Link Ctl, ACK1
15 13.000013	ff.ff.fd	ff.ff.fd	SW_ILS	FSPF: Hello
16 14 000014	ff ff fd	FF FF Fd	50	I INK CT] ACK1
N				
■ vegas (FC, SOI □ Fibre Channel	Ff/EOFn)			
■ vegas (FC, Sol ■ Fibre Channel R_CTL: 0x02 Dest Addr: CS_CTL: 0x0 Src Addr: f Torac CTL	Ff/EOFN) ff.ff.fd i0 f.ff.fd c (0222)			
■ Vegas (FC, SOI ■ Fibre Channel R_CTL: 0x02 Dest Addr: CS_CTL: 0x0 Src Addr: f	Ff/EOFN) ff.ff.fd ff.ff.fd c (00033)			
<pre> E Vegas (FC, SOI E Fibre Channel R_CTL: 0x02 Dest Addr: CS_CTL: 0x04 Src Addr: f</pre>	Ff/EOFN) ff.ff.fd f.ff.fd c f0.922 01 01 02 02 02	02 02 02 02 02 fc fc 00 01	8	
E vegas (FC, SOI E fibre Channel R_CTL: 0x02 Dest Addr: CS_CTL: 0x02 Src Addr: f -1 0000 01 01 01 01 0010 00 8a 000	Ff/EOFN) ff.ff.fd c (00000 c (00000 c 01 01 02 02 01 01 01 00 00	02 02 02 02 02 fc fc 00 01 00 00 00 00 00 00 02 f1	8	
E Vegas (FC, SOI E Fibre Channel R_CTL: 0x02 Dest Addr: CS_CTL: 0x02 Src Addr: f 0000 01 01 01 0010 00 8a 00 0020 ff fd 00	ff/EOFn) ff.ff.fd 0 f.ff.fd c (0003) 0 0 0 0 0 0 0 0 0 0 0 0 0	02 02 02 02 02 fc fc 00 01 00 00 00 00 00 00 02 f1 00 00 8a 00 00 00 03 b	8	I

Span Implementation in Barcelona

- Only Descriptors need to be replicated packets are already in the shared-memory fabric
- Span filter rules define what to observe
- Span Replication Engine sends replicas to fabric
- Fabric forwards packet to span observation port
- MPLS tunneling allows Remote Span

Congestion Control In Fibre Channel Networks

Cisco.com

- An inter-switch link (ISL) carrying multiple flows could be under B2B flow control when any one of the flows is congested
- Once ISL is under B2B flow control, all flows operate at the rate determined by the slowest of the flows
- Cisco invented FCC Fibre Channel Congestion Control

Shared Storage

Congestion Detection and Avoidance in Barcelona

Cisco.com

- Congestion monitoring on-chip
- Quench Packet Generation

-Triggered by receipt of packet on congested Output Queue

-Triggering packet supplies SA/DA

- Quench Packet sent towards the source
- Source-facing F port on last hop executes Quench and limits packet arrival rate via credit pacing

Implementation

- 13M Gates, 10.5 Mb Memory
- 16 SRDS on-chip
- 16.5x15.7 mm die in 0.13µ Technology
- 250 MHz clock rate
- 1517 pin package 900 signal pins with interfaces to TCAM, DDR SRAM, PCI Bus, Debug Bus
- Extensive debug features
- Implemented using ASIC flow no custom circuit in this implementation
- Hierarchical Placement, Flat Routing

Die Photo

Lab Results

- Chip demonstrated switching packets with internal packet generators within first 4 hours!
- Scripts allowed port-login with Agilent SAN Tester without need for driver
- Full 32-port SNAKE demonstrated at line rate within first week

Performance Testing With Snake Configuration

Summary

- Barcelona Switch-On-a-Chip for Enterprise SAN Applications has been described
- Barcelona-based fabric-class FC Switch offers industry's most advanced features
- It's unique architecture has permitted implementation using ASIC flow
- Modular implementation allows easy upgrade path

Cisco.com

CISCO SYSTEMS

Hot Chips 2005 © 2005 Cisco Systems, Inc. All rights reserved.