

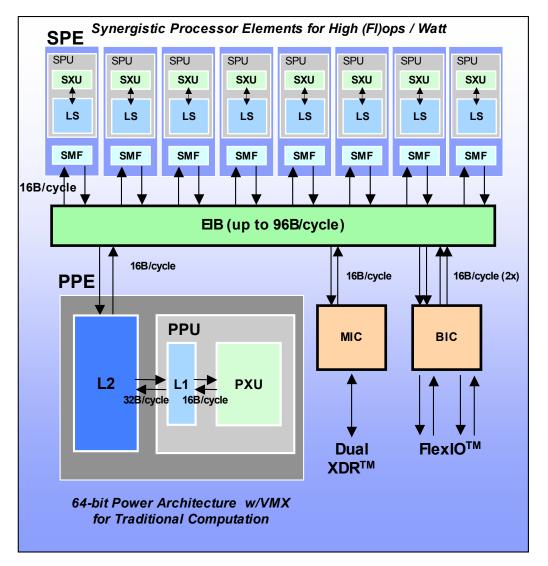
Systems and Technology Group

Cell Broadband Engine Interconnect and Memory Interface

Scott Clark, Kent Haselhorst, Kerry Imming, John Irish Dave Krolak, Tolga Ozguner
IBM Systems and Technology Group
Rochester, Minnesota

© IBM Corporation, 2005, All rights reserved

_		_	
_	_	_	
_	_	_	_


Agenda

- Cell Overview
- Interconnect Challenges
- Bus Interface Controller
- Element Interconnect Bus
- Memory Interface Controller
- Summary

 	_
	_

Cell Broadband Engine Key Features

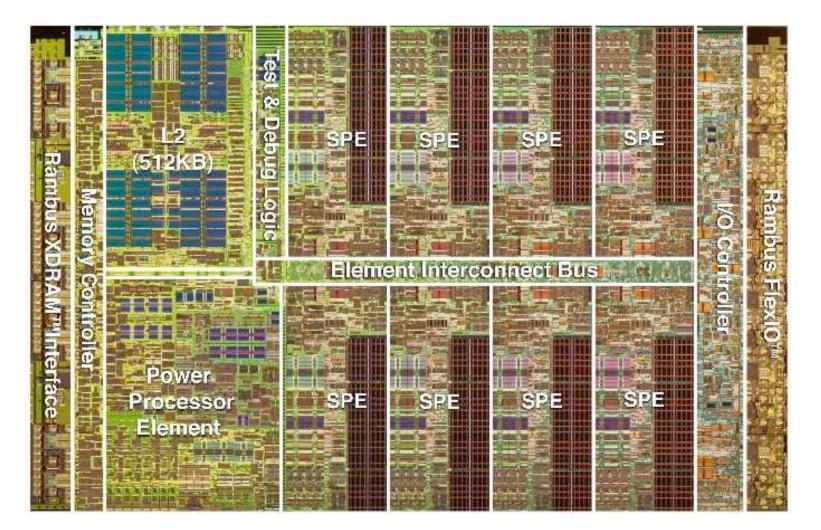
- The first generation CELL processor consists of:
 - A Power Processor Element (PPE)
 - 8 Synergistic Processor
 Elements (SPE) with
 Synergistic Memory Flow
 Control (SMF)
 - A high bandwidth Element Interconnect Bus (EIB)
 - A Bus Interface Controller with two configurable I/O interfaces (BIC)
 - A Memory Interface Controller (MIC)

		-	_
	_	_	
_	-		
	_	_	_

Cell BE Interconnect Challenges

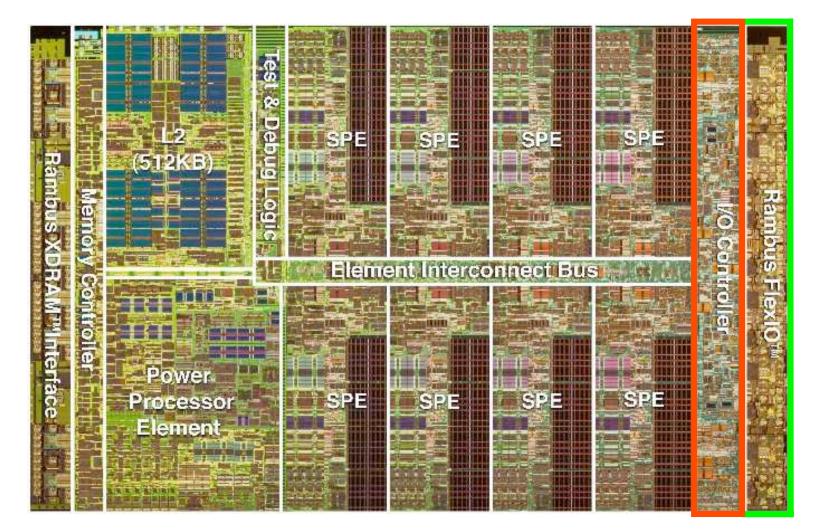
High Bandwidth

- Memory Bandwidth
- Internal Element to Element Bandwidth
- External I/O and SMP Bandwidth


Flexibility and Scalability

- Allow System Configuration Flexibility
- Modular Internal Bus Structure

_	


Cell Broadband Engine Die

5

_	

Bus Interface Controller (BIC)

Bus Interface Controller Overview

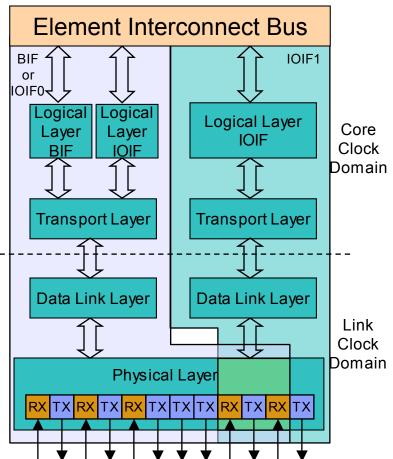
- Two configurable scalable interfaces
 - 7 bytes total outbound / 5 bytes total inbound chip capacity
 - Rambus FlexIOTM physical
 - 60 GB/s raw bandwidth at 5 Gb/s per differential pair
 - BIF/IOIF0
 - Configurable protocol
 - Broadband Engine Interface (BIF) coherent protocol
 - I/O Interface (IOIF) non-coherent protocol
 - Scalable from 0 to 6 bytes outbound / 0 to 5 bytes inbound
 - Up to 30 GB/s outbound / 25 GB/s inbound in 5 GB/s increments
 - IOIF1
 - IOIF protocol
 - Scalable from 0 to 2 bytes outbound / 0 to 2 bytes inbound
 - Up to 10 GB/s outbound / 10 GB/s inbound in 5 GB/s increments

_	 -	

Bus Interface Controller

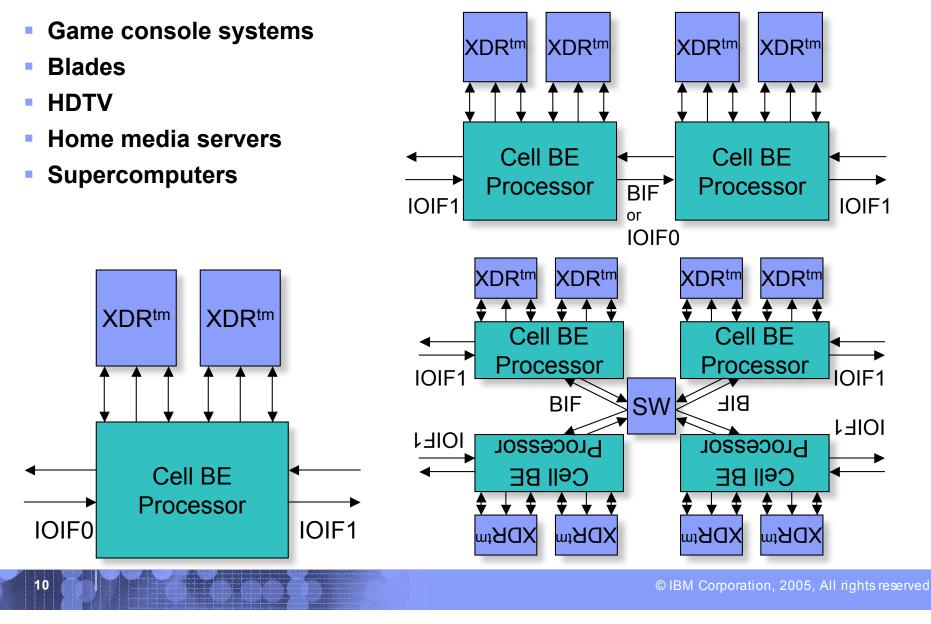
IOIF Mode Additional Features

- I/O Address Translation and Protection
 - Two stage segment table / page table lookup with caching
 - 4KB, 64KB, 1MB, 16MB page size support per segment
 - Storage protection at page granularity by device ID
 - Command ordering attributes assigned at page granularity
 - HW and SW load of translation caches
- Four Virtual Channels per IOIF
 - IOIF commands assigned to one of four virtual channels
 - Independent flow control, ordering and resource management per virtual channel
- Interrupt Controller
 - Interrupt presentation, routing and status to PPEs
 - Interprocessor Interrupt support
 - 16 priority levels


			to make a process of		
Svet	ame a	nd To	choold	DOV	Group
DV5	ellis d				J 000
		NAME AND ADDRESS OF OWNER	State and state beauty of	- 37	and when a second s

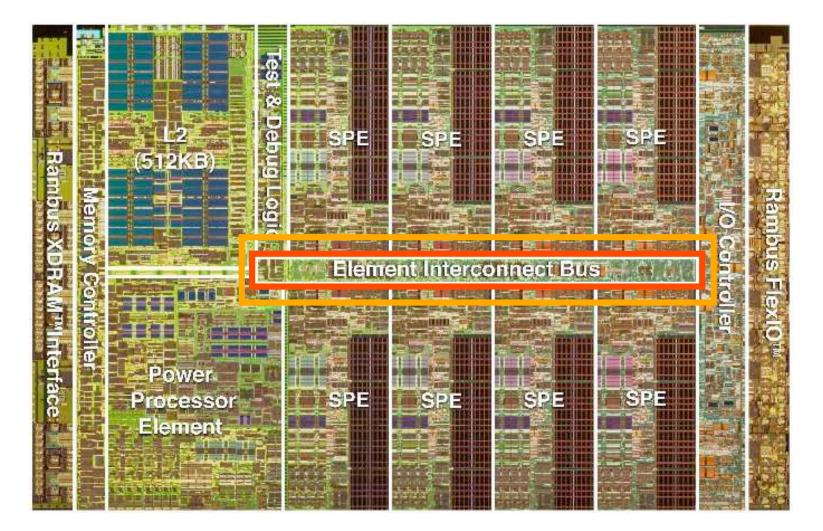
Bus Interface Controller

Flexible Bandwidth and Protocol through Layered Architecture


- Logical Layer
 - Selectable coherent or noncoherent protocol
 - Credit based flow control
- Transport Layer
 - Packet generation and parsing
 - Asynchronous to Data Link Layer
- Data Link Layer
 - Packet transmission and reception
 - CRC and retry protocol
- Physical Layer
 - Configurable interface widths in 1B granularity
 - Supports asymmetric Tx / Rx

Systems and Technology Group

_	_	
_	_	_


Cell BE Processor Can Support Many Systems

_	

11

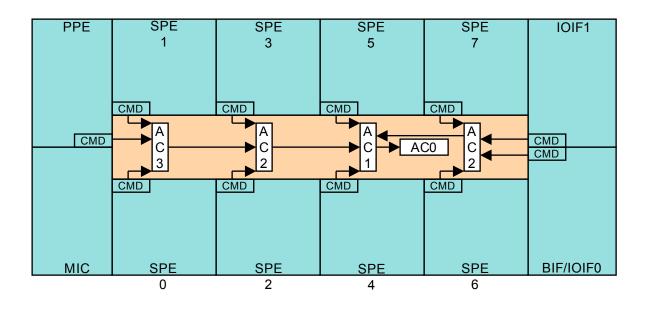
Element Interconnect Bus (EIB)

	_	_	
			_
	_		
_	_	_	

Element Interconnect Bus Overview

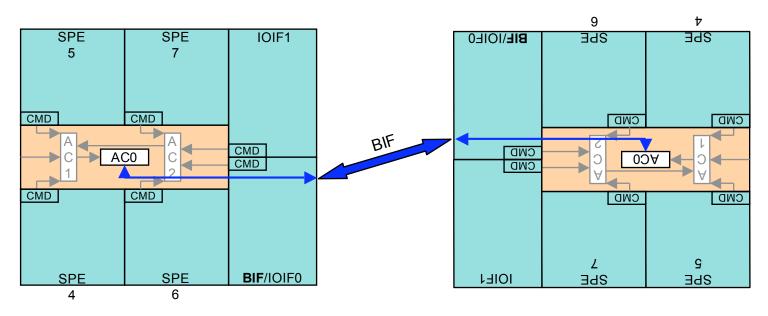
Coherent SMP Bus

- Supports over 100 outstanding requests
- Address collision detection and prevention


High Bandwidth

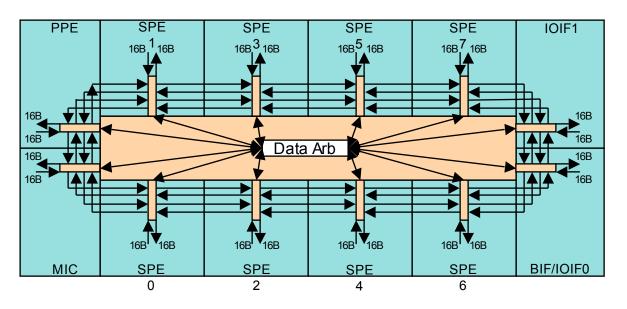
- Four 16 Byte data rings
- Operates at ¹/₂ processor core frequency
- Up to 96 Bytes / processor cycle 192 Bytes / bus cycle
 - Over 300 GB/s at 3.2 GHz processor
 - 16 Bytes / bus cycle source and 16 Bytes / bus cycle sink per port
 - 12 Element ports
- Modular Design for Scalability
 - Physical modularity for flexibility
- Independent Command/Address and Data Networks
- Split Command / Data Transactions

Element Interconnect Bus – Command Topology


- "Address Concentrator" tree structure minimizes wiring resources
- Single serial command reflection point (AC0)
- Address collision detection and prevention
- Fully pipelined
- Round robin arbitration
- Credit based flow control

TRM			
= = = = = = =	= = = = = = =		

Element Interconnect Bus – Coherent Connection


- BIF Coherent Protocol
- Dual chip configuration without external switch chip
 - Master / Slave AC0
- Multi-chip configuration possible with external switch chip
- Local command processing
 - AC1 root bypass for non-global commands

Element Interconnect Bus - Data Topology

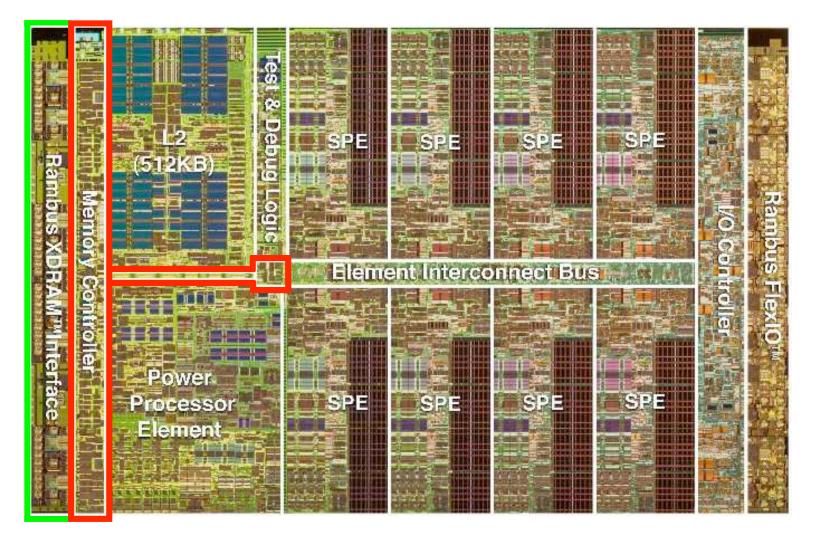
- Four 16B data rings connecting 12 bus elements
 - Two clockwise / Two counter-clockwise
- Physically overlaps all processor elements
- Central arbiter supports up to three concurrent transfers per data ring
 - Two stage, dual round robin arbiter
- Each element port simultaneously supports 16B in and 16B out data path
 - Ring topology transparent to element data interface

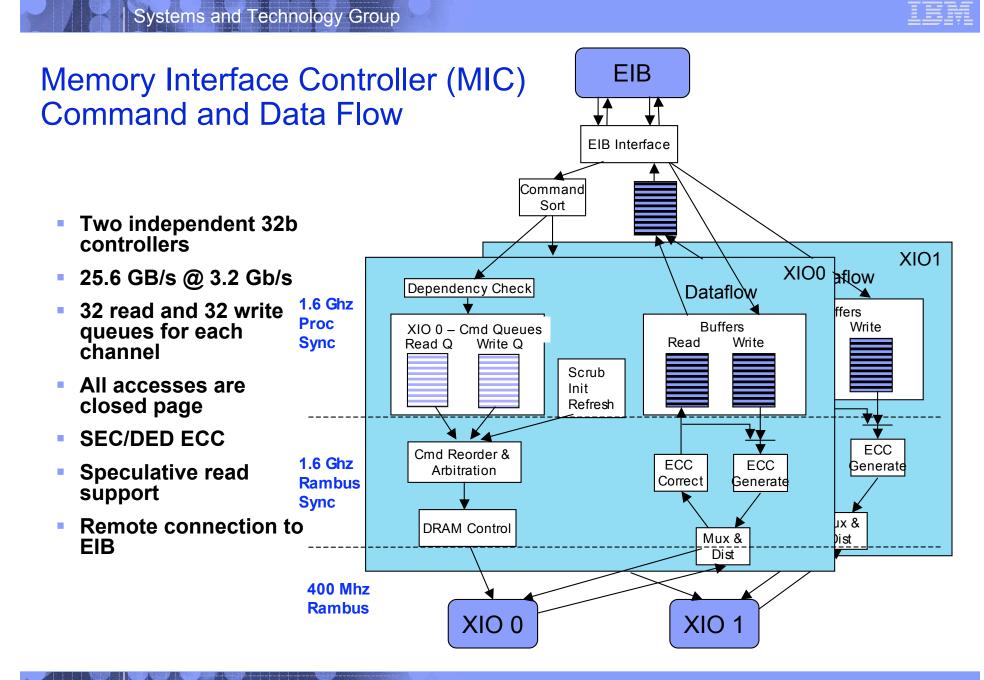
Resource Allocation Management

- Optional facility used to minimize over-allocation effects of critical resources
 - Independent but complimentary function to the EIB
 - Critical (managed) resource's time is distributed among groups of requestors

Managed resources include:

- Rambus XDRTM DRAM memory banks (0 to 15)
- BIF/IOIF0 Inbound and BIF/IOIF0 Outbound
- IOIF1 Inbound and IOIF1 Outbound
- Requestors Allocated to Four Resource Allocation Groups (RAG)
 - 17 requestors PPE, SPEs, I/O Inbound (4 VCs), I/O Outbound (4 VCs)


Central Token Manager controller


- Requestors ask permission to issue EIB commands to managed resources
- Tokens granted across RAGs allow requestor access to issue command to the EIB
- Round robin allocation within RAG
- Dynamic software configuration of the Token Manager to adjust token allocation rates for varying workloads
- Multi-level hardware feedback from managed resource congestion to throttle token allocation

	_	

17

Memory Interface Controller (MIC)

18

	_	_	
_		_	
	_		

Memory Interface Controller Overview

Capacity

- Dependent on XDRAM size & width
- Minimum of one 32b interface fully connected
 - 2 x 16b 256 Mb XDRAMs = 64 MB
- Maximum of 2 x 32b interface fully connected
 - Theoretical Maximum 64 x 1bit 8 Gb XDRAMs = 64 GB

Clocking

- The Rambus interface runs at 400 Mhz which is called a Pclk
- Memory Controller logic runs at ½ the processor frequency = 1.6 GHz with an asynchronous crossing to the Rambus clock domain which also runs at 1.6 GHz (multiplied up Pclk)
- The MIC dataflow distributes the data to the Rambus interface at 1.6 GHz and widens the datapath in the last level of logic to interface with the Rambus macro
- The Rambus macro then has an 8:1 clock ratio to drive the data out at 3.2 Gb/s per differential pair

_	_	_	
	_	_	
	_	_	_

Memory Interface Controller Overview

Logical to Physical Memory Map

- Interleaves across channels
- Interleaves across internal banks
- Enables closed bank memory controller to maximize random access bandwidth

Programmable Command Reordering to maximize bandwidth utilization

- Command selection will tend to group commands into burst of 8 or 16 in a row before switching the bus
- Bank conflicts, high priority reads, dependencies or lack of available commands can cause bus turnarounds

Memory Scrubbing to correct Single Bit Errors (optional)

- **Frequency**: Once every 20.6 msec
- **Duration**: One read is performed. A write is performed if a single bit error is found and corrected.

Refreshes

- Frequency: Once every .49 usec
- Duration: 1 command (4 Rambus Pclks)

	_	_	
_		_	
	_		

Design to Support XDR Dram Controller

Power on Initialization & Calibration

- Timing Calibration, Receive/Transmit, Setup and Hold
- Current Calibrations for drivers and receivers
- Impedance Calibrations for drivers and receivers

Periodic Calibration

- Periodic Timing Calibration, Receive/Transmit, Setup and Hold
 - Frequency: Once every 8 msec
 - Duration: 64 Rambus Pclks (4 separate operations)
- Current and Impedance Calibrations for drivers and receivers
 - Frequency: Once every 8 msec
 - Duration: 64 Rambus Pclks (4 separate operations)

Early Read

- Used to minimize Read to Write turnaround gap on the DRAM data busses
- Write masking support for 16B to 128B writes
 - Data dependant function
 - Requires Hardware calculation of ECC before storage into the Write data buffer

Summary

High Bandwidth Interconnect

- Dual XDRTM Memory Controller (25.6 GB/s @ 3.2 Gbps)
- Two I/O interfaces (60 GB/s @ 5 Gbps)
- Internal Element Interconnect (peak BW over 300 GB/s @ 3.2 GHz)
- Resource Allocation Management

Flexible and Scalable

- Multiple System Configurations
 - Configurable I/O Interface Bandwidth
 - Coherent and Non-coherent protocols
 - Configurable Memory Capacity and Bandwidth
- Internal Modular Interconnect Bus
- Memory and I/O Interfaces Asynchronous to Processor Core