Facing the Hot Chip Challenge (Again)

Bill Holt

General Manager
Technology and Manufacturing Group Intel Corporation

Hot Chips 17
August, 2005

Key Messages

- The driving force behind Moore's Law
- Power has always been a consideration
- Process and design collaboration required to address power challenges
- Technology Advances provide a transistor budget to support innovation
- Efficient Design utilizes transistor budget to deliver product performance

Moore's Law - 1965

Transistors
Per Die
10^{10}
10^{9}
10^{8}
$10{ }^{7}$
10^{6}
10^{5}

"Reduced cost is one of the big attractions of integrated electronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate." Electronics, Volume 38, Number 8, April 19, 1965

>1965 Data (Moore)

Moore's Law - 2005

Transistors
Per Die

The Economics of Moore's Law

Scaling: The Fundamental Cost Driver

| Twice the |
| :---: | :---: | :---: | :---: |
| circuitry in the |
| same space |
| (architectural |
| innovation) |\quad| The same |
| :---: |
| circuitry in half |
| the space |
| (cost reduction) |\quad| Half the die size |
| :---: |
| for the same |
| capability than |
| in the prior |
| process |

Wafer Size: Enables Cost Efficiency

Year That Industry Exceeds 3 Million wafers/year

Processed Wafer Cost

$\$ / \mathrm{cm}^{2}$

Wafer size conversions offset trend of increasing wafer processing cost

Moore's Law + Bigger Wafers = Lower Cost/function

Key Messages

- The driving force behind Moore's Law
- Power has always been a consideration
- Process and design collaboration required to address power challenges
- Technology Advances provide a transistor budget to support innovation
- Efficient Design utilizes transistor budget to deliver product performance

Power challenges are neither new nor fundamental

"Will it be possible to remove the heat generated by 10 's of thousands of components?"
G. Moore, Cramming more components onto integrated circuits, Electronics, Volume 38, Number 8, April 19, 1965

Moore's Law Preceded CMOS

"The power barriers now facing alternative semiconductor processes indicate that only CMOS will allow chip makers to capitalize on the density that can be achieved with gate arrays and standard cells."
"Once, maybe twice a decade the electronics industry encounters a force that affects not only the way circuits are physically designed but also the way the industry thinks. CMOS is just such a force."

Silicon Technology has Changed to Increase Power Efficiency

1960's: Bipolar
1970's: PMOS, NMOS
1980's: CMOS
1990's: Voltage scaling ($\mathrm{P}=\mathrm{CV}^{2}$)
2000's: Power efficient scaling/design

Moore's Law Will Outlive CMOS

Key Messages

- The driving force behind Moore's Law
- Power has always been a consideration
- Process and design collaboration required to address power challenges
- Technology Advances provide a transistor budget to support innovation
- Efficient Design utilizes transistor budget to deliver product performance

Process Advances Still Scale Power

but the rate has slowed and collaboration is required

Leakage becomes Significant

Power scaling vs. process for the last 10 years (includes frequency increasing with process speed)

However, Power Density Has Leveled Off

Effective Process and Design Collaboration Succeeds in Power Improvements

Key Messages

- The driving force behind Moore's Law
- Power has always been a consideration
- Process and design collaboration required to address power challenges
- Technology Advances provide a transistor budget to support innovation
- Efficient Design utilizes transistor budget to deliver product performance

Silicon Technology Advances

New technology generation every 2 years

Transistor Gate Length Scalling

Transistor gate length $\sim 60 \%$ of other minimum features

Key Density Indicator Continues to Scale

Gate pitch continues to scale $0.7 \times$ per generation, providing $\sim 2 x$ transistor density improvements

Strained Silicon Improves Transistor Performance and Leakage Today

High-k Dielectric Can Reduce Gate Leakage Tomorrow

	High-k vs. SiO_{2}	Benefit
Gate capacitance	60% greater	Faster transistors
Gate dielectric leakage	$>100 \mathrm{x}$ reduction	Lower power

Process integration is the key challenge

Transistors Require Optimization to the Application

 Performance vs. Leakage

Optimized transistors can provide $\sim 1000 x$ lower leakage

65 nm Generation Transistors Today

- 35 nm gate length
- 1.2 nm gate oxide
- 220 nm gate pitch
- NiSi for low resistance
- $2^{\text {ND }}$ generation strained silicon for enhanced performance/power

Innovations Required to Reduce Interconnect RC Challenges

3D Silicon Stacking

Wafer

65 nm Generation Interconnects

Innovation-Enabled Pipeline in Place

Key Messages

- The driving force behind Moore's Law
- Power has always been a consideration
- Process and design collaboration required to address power challenges
- Technology Advances provide a transistor budget to support innovation
- Efficient Design utilizes transistor budget to deliver product performance

Power Reduction Techniques

- Optimum Design
- Leakage Control
- Active Power Reduction
- Increase On-die Memory
- Multi-threading
- Dual Core and Multi-core
- Special Purpose Hardware
- Function Integration through SOC/SIP

Circuit Techniques Reduce Source Drain Leakage

Body Bias

Leakage
Reduction 2-10X

Stack Effect

$5-10 X$

Sleep Transistor

$2-1000 x$

Sleep Transistor Reduces SRAM Leakage Power

$>3 x$ SRAM leakage reduction on inactive blocks

Active Power Reduction

Multiple Supply Voltages

Replicated Designs

Dual Core

Rule of thumb

Voltage	Frequency	Power	Performance
1%	1%	3%	0.66%

In the same process technology...

Voltage $=1$
Freq = 1
Area $=1$
Power = 1
Perf = 1
Voltage $=-15 \%$
Freq $=-15 \%$
Area $=2$
Power = 1
Perf $=\sim 1.8$

Special Purpose Hardware

Special Purpose HW Engine

$2.23 \mathrm{~mm} \times 3.54 \mathrm{~mm}, 260 \mathrm{~K}$ transistors

Opportunities: MPEG Encode/Decode Speech recognition Graphics

Special purpose HW-Best Mips/Watt

Value of Integration

- Special-purpose hardware \rightarrow more MIPS $/ \mathrm{mm}^{2}$
- SIMD integer and FP instructions in several ISAs

	Die Area	Power	Performance
General Purpose	2 X	2 X	$\sim 1.4 \mathrm{X}$
Multimedia Kernels	$<10 \%$	$<10 \%$	$1.5-4 \mathrm{X}$

Si Monolithic Polylithic
Heterogeneous
Si, SiGe, GaAs

OptoElectronics

RF

Dense Memory

Joint Power Reduction Technology Roadmap

Process Technology	Dual Vt Copper	Dual Vt (Le) Strain engineering Low K ILD	FinFET (Tri- Gate) Metal Gate
Circuits and Design	Sizing Clock gating		
Micro- Architecture	Shallower pipelines Large caches Multi-threading	Sleep transistors Stack effect Multiple supply voltages	

Effective Process and Design Collaboration Succeeds in Power Improvements

... and it works

Conclusions

- Economics is driving force behind Moore's Law
- Power has always been a consideration
- Process and design collaboration required to address power challenges
- Technology Advances provide a transistor budget to support innovation
- Efficient Design utilizes transistor budget to deliver product performance

Thank you

