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Key Messages

* The driving force behind Moore’s Law
* Power has always been a consideration

* Process and design collaboration required to
address power challenges

* Technology Advances provide a transistor
budget to support innovation

» Efficient Design utilizes transistor budget to
deliver product performance




Moore’s Law - 1965
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Moore’s Law - 2005
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The Economics of Moore’s Law

As the
number of
transistors

goes UP

Cost per
transistor
goes DOWN

Source: WST S/Dataguest/Intel




Scaling: The Fundamental Cost Driver
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Wafer Size: Enables Cost Efficiency
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Processed Wafer Cost

150mm 200mm

Wafer size conversions offset trend of
increasing wafer processing cost
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Moore’s Law + Bigger Wafers =
Lower Cost/function
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Power challenges are
neither new nor fundamental

“Will it be possible to
iemoyve the heat
generated by 10°s of

thousands of
components?”

G. Moore, Cramming more conmponents
onto integrated circuits, Electronics,
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Moore’s Law Preceded CMOS
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Electronic Design - Ocicber 4 1984 ’

‘The power barriers now facing|alternative semiconductor
processes indicate that only' CMOS will allow: chip makers to capitalize
onthe density that can be achieved with gate arrays stad_arg cells.”

“Once;, mayhe twice a decade the electronics,industry’encounters a force
that affects not only the way: circuits are physically designed but alse the

way the industry thinks. CMOS is just such a force.’

Source: Electronic Design, October 1984




Silicon Technology has Changed to
Increase Power Efficiency

1960°s: Bipolar

1970’s: PMOS, NMOS

1980’s: CMOS

1990’s: Voltage scaling (P. = CV2f)

2000°s: Power efficient scaling/design




Moore’s Law Will Outlive CMOS
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Process Advances Still Scale Power

but the rate has slowed and collaboration is required
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Leakage becomes Significant

Power scaling vs. process for the last 10 years
(includes frequency increasing with process speed)
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However, Power Density Has
Leveled Off
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Effective Process and Design Collaboration
Succeeds in Power Improvements

—
)
=
o
al
o)
=
©
@)
i

Next 90nm Process Process,
generation process plus design
product if only design efficiency,
130nm efficiency and frequency
Increase
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Silicon Technology Advances

Feature Size Scaling
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Transistor Gate Length Scaling
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Key Density Indicator Continues to Scale
Mle=r

Contacted
Gate Pitch 1
(micron)

0.7x every
2 years
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Gate pitch continues to scale 0.7x per generation,
providing ~2x transistor density improvements

23




Strained Silicon Improves Transistor
Performance and Leakage Today
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High-k Dielectric Can Reduce Gate
Leakage Tomorrow
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Process integration is the key challenge

Source: Intel
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Transistors Require Optimization to the Application

Performance vs. Leakage
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65 nm Generation Transistors Today

* 35 nm gate length
* 1.2 nm gate oxide
e 220 nm gate pitch
* NiSi for low resistance

» 2ND generation strained
silicon for enhanced
performance/power




Innovations Required to Reduce
Interconnect RC Challenges

Clock Period

Copper Interconnect
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Process Technology
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3D Silicon Stacking

Wafer Die
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65 nm Generation Interconnects

Cu Line

Dielectric




Innovation-Enabled Pipeline In
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Future options subject to change

Source: Intel
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Key Messages

* The driving force behind Moore’s Law
* Power has always been a consideration

* Process and design collaboration required to
address power challenges

* Technology Advances provide a transistor
budget to support innovation

» Efficient Design utilizes transistor
budget to deliver product performance




Power Reduction Techniques

* Optimum Design

* Leakage Control

* Active Power Reduction

* Increase On-die Memory

* Multi-threading

* Dual Core and Multi-core

e Special Purpose Hardware

* Function Integration through SOC/SIP




Circuit Techniques Reduce
Source Drain Leakage

Body Bias Stack Effect Sleep Transistor
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Sleep Transistor Reduces SRAM
Leakage Power

70 Mbit SRAM leakage current map

NMOS

Sleep —||:

Transistor

Vss Without sleep transistor With sleep transistor

>3x SRAM leakage reduction on inactive blocks

Source: Intel




Active Power Reduction
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Dual Core
Rule of thumb

Voltage |Frequency |Power Performance
1% 1% 3% 0.66%

In the same process technology...

-

Voltage = 1 Voltage = -15%
Freq =1 Freq -15%
Area = 1 Area 2
Power =1 Power 1
Perf =1 Perf ~1.8




Special Purpose Hardware
Special Purpose HW Engine
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Value of Integration

 Special-purpose hardware & more MIPS/mm?
 SIMD integer and FP instructions in several ISAs
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Joint Power Reduction
Technology Roadmap

Process Dual Vt Dual Vt (Le) FinFET (Tri-

Technology | Copper Strain engineering Gate)
Low K ILD Metal Gate
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Circuits and | Sizing Sleep transistors
Design Clock gating Stack effect

Multiple supply voltages

Body Bias

Micro- Shallower Multi-threaded Multi-core
Architecture | Pipelines Increasing multi-processing

Large caches Special purpose HW
Multi-threading

Future options subject to change




Effective Process and Design Collaboration
Succeeds in Power Improvements
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130nm Next 90nm Process Process,
generation process plus design
product if only design efficiency,
130nm efficiency and frequency
Increase




... and 1t works

Cores/Threads
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Frequency

Relative Performance
Thermal Design Power
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Conclusions

 Economics is driving force behind Moore’s Law
* Power has always been a consideration

* Process and design collaboration required to
address power challenges

* Technology Advances provide a transistor
budget to support innovation

» Efficient Design utilizes transistor budget to
deliver product performance
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