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Designing within limits: power & energy

• Thermal limits (for most parts self-heating is a substantial thermal

issue)

- package cost (4-5W limit for cheap plastic package, 100W/sq-cm air cooled

limit, 7.5kW 19” rack)

- Device reliability (junction temp > 125C substantial reduction in reliability)

- Performance (25C -> 105C loss of 30% of performance)

- Distribution limits

- Substantial portion of wiring resource, area for power dist.

- Higher current => lower R, greater dI/dt => more wire, decap

- Package capable of low impedance distribution

- Energy capacity limits

- AA battery ~1000mA.hr => limits power, function, or lifetime

- Energy cost

- Energy for IT equipment large fraction of total cost of ownership
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CMOS circuit power consumption components

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

• Dynamic power consumption ( ½ CswVdd ΔV f  +  IstVdd)

– Load switching (including parasitic & interconnect)

– Glitching

– Shoot through power (IstVdd)

• Static power consumption (IstaticVdd)

– Current sources – bias currents

– Current dependent logic -- NMOS, pseudo-NMOS, CML

– Junction currents

– Subthreshold MOS currents

– Gate tunneling
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Review of Constant Field Scaling
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CMOS Circuit Delay and Frequency

Td = kCV/I

      = kCV/(Vdd-Vt)
α

VLSI system frequency determined by:

Sum of propagation delays across gates in “critical path” --

Each gate delay, includes time to charge/discharge

load thru a FET and interconnect delay to distribute

to next gate input.

Sakuri α-power law model of delay
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 Gate Delay Trends

Td = kCV/I

      = kCV/(Vdd-Vt)
α

Each technology generation, 

gate delay reduced about 30%

(src: ITRS ’01)

Consistent with

C.F. Scaling
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Microprocessor Frequency

In practice the trend is:

Frequency increasing by 2X (delay decreasing by 50%),

not the 1.4X (30%) for constant field scaling (src: ITRS ’01).

Why? decreasing logic/stage and increased pipeline depth.
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Dynamic Energy
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Supply Voltage/Energy Trend

With each generation, voltage has decreased 0.85x, 

not 0.7x for constant field.

Thus, energy/device is decreasing by 50% rather than 65%
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Active Power Trend

But, number of transistors has been increasing, thus

- a net increase in energy consumption,

- with freq 2x, active power is increasing by 50%
(src: ITRS ’01)
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Active-Power Reduction Techniques

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

Active power can be reduced through:

− Capacitance minimization

− Power/Performance in sizing

− Clock-gating

− Glitch suppression

− Hardware-accelerators

− System-on-a-chip integration

− Voltage minimization

− (Dynamic) voltage-scaling

− Low swing signaling

− SOC/Accelerators

− Frequency minimization

− (Dynamic) frequency-scaling

− SOC/Accelerators
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Capacitance minimization

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

Only the devices (device width) used in the design

consume active power!

− Runs counter to the complexity-for-IPC trend

− Runs counter to the SOC trend
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Capacitance minimization

Example of managing design capacitance:

Device sizing for power efficiency is significantly different than

sizing for performance – sizing of the gate size multiplier in an

exponential-horn of inverters.
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Functional Clock Gating

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

• 25-50% of power consumption due to driving latches.

• Utilization of most latches is low (~10-35%)

• Gate off unused latches and associated logic:

– Unit level clock gating – turn off clocks to FPU,

MMX, Shifter, L/S unit, …

– Functional clock gating – turn off clocks to individual

latch banks – forwarding latch, shift-amount register,

overflow logic & latches, …

• Asynch is the most aggressive gating
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Glitch suppression

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

• Glitches can represent a sizeable portion of active

power, (up to 30% for some circuits in some studies)

• Three basic mechanisms for avoidance:

– Use non-glitching logic, e.g. domino

– Add redundant logic to avoid glitching hazards

• Increases cap, testability problems

– Adjust delays in the design to avoid

• Shouldn’t timing tools do this already if it is possible?
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Voltage minimization

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

• Lowering voltage swing, ΔV, lowers power

– Low swing logic efforts have not been very

successful (unless you consider array voltage

sensing)

– Low swing busses have been quite successful

• Lowering supply, Vdd and ΔV, (voltage scaling) is most

promising:

– Frequency ~V, Power ~V3
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Avg Relative Ring Osc Delay/Power
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Voltage Scaling Reduces Active Power

• Voltage Scaling Challenges

− Custom CPUs, Analog, PLLs, and
I/O drivers don’t voltage scale
easily

− Sensitivity to supply voltage
varies circuit to circuit – esp
SRAM, buffers, NAND4

− Thresholds tend to be too high at
low supply

• Voltage Scaling Benefits

− Can be used widely over entire
chip

− Complementary CMOS scales well
over a wide voltage range

− Can optimize power/performance
(MIPS/mW) over a 4X range

After Carpenter, Microprocessor forum, ‘01
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Frequency minimization

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

• Lowering frequency lowers power linearly

– DOES NOT improve energy efficiency, just slows

down energy consumption

– Important for avoiding thermal problems
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Voltage-Frequency-Scaling Measurements

PowerPC 405LP

Freq scale ¼ freq, ¼ pwr; DVS ¼ freq, 1/10 pwr

Freq

Scaling

Plus DVS

Src: After Nowka,

et.al. JSSC, Nov ‘02
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Shoot-through minimization

P = ½ CswVdd ΔV f  +  IstVdd +  IstaticVdd

• For most designs, shoot-thru represents 8-15% of

active power.

• Avoidance and minimization:

– Lower supply voltage

– Domino?

– Avoid slow input slews

– Careful of level-shifters in multiple voltage domain

designs
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Static Power

P = CswVdd ΔV f  +  IstVdd +  IstaticVdd

• Static energy consumption (IstaticVdd)

– Current sources – even uA bias currents can

add up.

– NMOS, pseudo-NMOS – not commonly used

– CMOS CML logic – significant power for

specialized use.

– Junction currents

– Subthreshold MOS currents

– Gate tunneling
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Subthreshold Leakage

P = KVe(Vgs-Vt)q/nkT (1 – e Vds q/kT)

• Supplies have been held artificially high  (for freq)

– Threshold has not dropped as fast as it should

– Want to maintain Ion:Ioff = ~1000uA/u : 10nA/u

– Relatively poor performance => Low Vt options

• 70-180mV lower Vt, 10-100x higher leakage, 5-15% faster

• Subthreshold lkg especially increasing in short channel

devices (DIBL) & at high T – 100-1000nA/u

• Subthreshold slope 70-80mV/decade

• Cooling changes the slope….but can it be energy

efficient?
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Projected Subthreshold Leakage Trends

Sub-Threshold Leakage Current (Isd,leak)
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Src: ITRS ’01, ’03

Note: Hatched bars are interpolated
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Trends in Leakage Contribution to Power

Src: Nowak, et al.
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Gate Leakage

• Gate tunneling becoming dominant leakage mechanism

in very thin gate oxides

• Current exponential in oxide thickness

• Current exponential in voltage across oxide

• Reduction techniques:

– Lower the field (voltage or oxide thickness)

– New gate ox material
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Gate Leakage Trends

After  Nowak, et al.

Fit of published active, subthreshold, and gate leakage densities

Lpoly (µm)

P
o

w
e
r 

(W
/c

m
2
)



IBM Austin Research Laboratory

HOT Chips 2005 – Power Tutorial Foil # 33

Future Leakage, Standby Power Trends

Src: ITRS ‘01

And, recall number of transistors/die

has been increasing 2X/2yrs

(Active power/gate should be 0.5x/gen, 

has been 1X/gen)
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Standby-Power Reduction Techniques

Standby power can be reduced through:

− Capacitance minimization

− Voltage-scaling

− Power gating

− Vdd/Vt selection
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Capacitance minimization

Only the devices (device width) used in the design leak!

− Runs counter to the complexity-for-IPC trend

− Runs counter to the SOC trend

− Transistors are not free -- Even though they are not

switched they still leak
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Voltage Scaling Standby Reduction

After Nowka, et.al. ISSCC ‘02

Decreasing the supply voltage significantly improves standby power

Subthreshold dominated technology
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Supply/Power Gating

• Especially for energy constrained (e.g. battery

powered systems). Two levels of gating:

– “Standby, freeze, sleep, deep-sleep, doze, nap,

hibernate”:  lower or turn off power supply to

system to avoid power consumption when inactive

• Control difficulties, hidden-state, entry/exit, “instant-

on” or user-visible.

– Unit level power gating – turn off inactive units

while system is active

• Eg. MTCMOS

• Distribution, entry/exit control & glitching, state-loss…
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MTCMOS

• Use header and/or footer switches to disconnect supplies when

inactive.

• For performance, low-Vt for logic devices.

• 10-100x leakage improvement, ~5% perf overhead

• Loss of state when disconnected from supplies

• Large number of variants in the literature
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Vt / Tox selection

• Low Vt devices on critical paths, rest high Vt

• 70-180mV higher Vt, 10-100x lower leakage, 5-20% slower

• Small fraction of devices low-Vt (1-5%)

• Thick oxide (Tox) reduces gate leakage by orders of

magnitude
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Device Stacking

• Decreases subthreshold leakage

• Improvement beyond use of long channel device

• 2-5x improvement in subthreshold leakage

• 15-35% performance penalty

XXbX
Xb

Stacked

devices
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Vt or/and Vdd selection

• Design tradeoff:
– Performance => High supply, low threshold

– Active Power => Low supply, low threshold

– Standby => Low supply, high threshold

• Static
– Stack effect – minimizing subthreshold thru single fet paths

– Multiple thresholds: High Vt and Low Vt transistors

– Multiple supplies: high and low Vdd
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Vt or/and Vdd selection (cont’d)

• Design tradeoff:
– Performance => High supply, low threshold
– Active Power => Low supply, low threshold
– Standby => Low supply, high threshold

• Static
– Stack effect – minimizing subthreshold thru single fet paths
– Multiple thresholds: High Vt and Low Vt Transistors
– Multiple supplies: high and low Vdd
– Problem: optimum (Vdd,Vt) changes over time, across dice

• Dynamic (Vdd,Vt) selection
– DVS for supply voltage
– Dynamic threshold control thru:

• Active well
• Substrate biasing
• SOI back gate, DTMOS, dual-gate technologies
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Hitachi-SH4 leakage reduction

Triple Well Process

Reverse Bias Active Well – 

can achieve >100x leakage reduction
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Nwell/Virtual Gnd Leakage Reduction
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Low Power Circuits Summary

Technology, Scaling, and Power

Technology scaling hasn’t solved the power/energy problems.

So what to do? We’ve shown that,

Do less and/or do in parallel at low V. For the circuit designer this

implies:

– supporting low V,

– supporting power-down modes,

– choosing the right mix of Vt,

–    sizing devices appropriately

– choosing right Vdd, (adaptation!)
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