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System Virtual Machines: OutlineSystem Virtual Machines: Outline

 Applications and Usage Models

 Virtualization Methods and VMM Software Architecture

 Hardware Resource Virtualization
• General principles of CPU virtualization

(with IA-32 / Intel VT* case study)

• General principles of memory virtualization
(page-table shadowing case study)

• General principles of IO virtualization

 Wrap-up

* Intel® Virtualization Technology (VT)



August  2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 4

Physical Host Hardware

System Virtual Machines (VMs)System Virtual Machines (VMs)

 A Virtual Machine Monitor (VMM) honors existing hardware
interfaces to create virtual copies of a complete hardware system
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System VMs:System VMs:

Applications and Usage ModelsApplications and Usage Models
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Basic System VM CapabilitiesBasic System VM Capabilities
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Traditional Server ApplicationsTraditional Server Applications

 Manageability, Reliability, Availability
• Server consolidation (Legacy OSes, “One App per OS”)

• Staged deployment of OS upgrades, security patches, etc.

• Software failures confined to VM in which they occur

• Service migration in “Virtual Data Center”
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Emerging Client ApplicationsEmerging Client Applications

 Security / Trusted Computing
• VMs encapsulate untrusted legacy software

• Create new environment for trusted code

 Client Partitioning
• Extending server manageability features to the client

(e.g., “Embedded IT” client)

Apps
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Hardware Platform

User Apps

OS

User-visible

“Capability OS”
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Virtualization MethodsVirtualization Methods

andand

VMM Software ArchitectureVMM Software Architecture
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VM1

Anatomy of a Virtualized SystemAnatomy of a Virtualized System

VM0

OS1 ... OS2
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Base VMM RequirementsBase VMM Requirements

 A VMM must be able to:
• Protect itself from guest software

• Isolate guest software stacks (OS + Apps) from one another

• Present a (virtual) platform interface to guest software

 To achieve this, VMM must control access to:
• CPUs, Memory and I/O Devices

 Ways that a VMM can share resources between VMs
• Time multiplexing

• Resource partitioning

• Mediating hardware interfaces
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VMM

(1) Time Multiplexing(1) Time Multiplexing

 VM is allowed direct access to resource for a period of time

before being context switched to another VM (e.g., CPU resource)

 Devil is in the details (will examine via a case study in later foils)

Processor

VM0 VM1
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VMM

(2) Resource Partitioning(2) Resource Partitioning

 VMM allocates “ownership” of phys resources to VMs
• Typically involves some remapping and protection mechanism

• Examples: physical memory, disk partitions, graphical display

VM0 VM1

DisplayStorage Memory

Remap / Protection Mechanism
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VMM

VM0 VM1

(3) Mediating Hardware Interfaces(3) Mediating Hardware Interfaces

 VMM retains direct ownership of physical resource
• VMM hosts device driver as well as a virtualized device interface

• Virtual interface can be same as or different than physical device

Network Keyboard / Mouse
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VM0

Putting it all Together...Putting it all Together...

 VMM applies all 3 sharing methods, as needed, to

create illusion of platform ownership to each guest OS

VMM

VM1

Processor DisplayStorage MemoryNetwork Keyboard / Mouse

VM2 VM3



August  2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 16

Some VMM Architecture OptionsSome VMM Architecture Options

 Hypervisor architecture

provides its own device

drivers and services

Hypervisor Architecture

...

Hypervisor
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and Apps

Guest OS
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Guest OS
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Host HW

Device Models (Top)
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 Hosted architecture
leverages device drivers
and services of a “host OS”
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System Virtualization Case StudiesSystem Virtualization Case Studies
Processor VirtualizationProcessor Virtualization
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VM0

CPU Virtualization: General PrinciplesCPU Virtualization: General Principles

 To virtualize a CPU, a VMM must retain control over:
• Accesses to privileged state (control regs, debug regs, etc.)

• Exceptions (page faults, machine-check exceptions, etc.)

• Interrupts and interrupt masking

• Address translation (via page tables)

• CPU access to I/O (via I/O ports or MMIO)

VMM

Processor

VM1
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CPU Control via CPU Control via ““Ring DeprivilegingRing Deprivileging””

 Ring Deprivileging Defined:
• Guest OS kernel runs in a less privileged ring than usual

(i.e., above ring 0)

• VMM runs in the most privileged ring 0

 Goal of ring deprivileging is to prevent guest OS from:
• Accessing privileged instructions / state

• Modifying VMM code and data
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Case Study: IA-32 CPU VirtualizationCase Study: IA-32 CPU Virtualization

 IA-32 Provides 4 Privilege Levels (Rings)

 Segment-based Protections
• Distinguish between all 4 rings

 Page-based Protections
• Separate only User and Supervisor modes

• User mode: Code running in ring 3

• Supervisor mode: Code running in rings 0, 1, or 2
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Ring Deprivileging: Some OptionsRing Deprivileging: Some Options

Applications

OS Kernel Ring 0

Ring 3

Without Ring
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VMM

Guest Apps

Guest OS
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Ring 3 The

“0/3”

Model

VMM

Guest Apps

Guest OS
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With Ring Deprivileging

 Each option has certain
pros / cons

 Will explore in the coming
foils…
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Ring CompressionRing Compression

 For the case of the 0/3 Model:
• Guest OS and Apps run in the same ring (3)

• Lose ring protections between guest OS / Apps

• Two rings are “compressed” into one

 For the case of the 0/1/3 Model:
• No ring compression, but…

• Can’t use paging to protect VMM from guest OS

• VMM forced to use segment-based protections

 The following foils assume 0/1/3 Model…
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IA-32 Virtualization HolesIA-32 Virtualization Holes
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Addressing IA-32 Addressing IA-32 ““Virtualization HolesVirtualization Holes””

 Method 1: Paravirtualization Techniques
• Modify guest OS to work around virtualization holes

• Requires ability to modify guest-OS source code

 Method 2: Binary Translation or Patching
• Modify guest OS binaries “on-the-fly”

• Source code not required, but introduces new complexities

• E.g., self-modifying code, translation caching, etc.

• Some excessive trapping remains (e.g., SYSENTER case)

 Method 3: Change Processor ISA
• Re-architect instruction set to close virtualization holes by design

• Example: New VT-x features for IA-32 processors…

Software-only

Methods
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Case Study: IA-32 Virtualization w/ VT-xCase Study: IA-32 Virtualization w/ VT-x

 VT-x is a new operating mode for IA-32 processors

• Part of Intel® Virtualization Technology (VT)

• Will be launched in Intel desktop CPUs in second half of 2005

 Operating mode enabled with VMXON / VMXOFF

 VT-x provides two new forms of operation:

• Root Operation: Fully privileged, intended for VMM

• Non-root Operation: Not fully privileged, intended for guest OS



August  2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 26

Case Study: IA-32 Virtualization w/ VT-xCase Study: IA-32 Virtualization w/ VT-x

Root
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VT-x Transitions: VM Entry and VM ExitVT-x Transitions: VM Entry and VM Exit

 VM Entry
• VMM-to-guest transition

• Initiated by new instructions: VMLAUNCH or VMRESUME

• Enters non-root operation, loading guest state

• Establishes key guest state in a single, atomic operation

 VM Exit
• Guest-to-VMM transition

• Caused by virtualization events

• Enters root operation

• Saves guest state

• Load VMM state

Ring 3

Ring 0

Root

Operation

Virtual Machines (VMs)

Apps

OS 

VMM

Apps

OS 

VM ExitVM Entry

VMRESUME
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VT-x Config Flexibility with the VMCSVT-x Config Flexibility with the VMCS

 VM Control Structure (VMCS) specifies CPU behavior

• Holds guest state loaded / stored on VM entry / exit

• Accessed through a VMREAD / VMWRITE interface

 Configuration of VMCS controls guest OS behavior
• VMM programs VMCS to cause VM exits on desired events

 VM exits possible on:
• Privileged State: CRn, DRn, MSRs

• Sensitive Ops: CPUID, HLT, etc.

• Paging events: #PF, INVLPG

• Interrupts and Exceptions

 Other optimizations:

• Bitmaps, shadow registers, etc.

Ring 3

Ring 0

Apps

OS 

(VMM)VMCS 

VM Exit VM Entry

VMREAD

VMWRITE
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The VM Control Structure (VMCS)The VM Control Structure (VMCS)

 Each virtual CPU has a separate VMCS
• For MP guest OS: separate VMCS for each “virtual CPU”

 One VMCS per logical CPU is active at any given time
• VMPTRLD instruction used to switch from one VMCS to another

VM-execution controls  
Determines what operations 

cause VM exits  

CR0, CR3, CR4, Exceptions, IO 

Ports, Interrupts, Pin Events, etc.  

Guest -state area  
Saved on VM exits  

Reloaded on VM entry  

EIP, ESP, EFLAGS, IDTR, Segment 

Regs, Exit info, etc.  

Host -state are a Loaded on VM exits  
CR3, EIP set to monitor entry point, 

EFLAGS hardcoded, etc.  

VM-exit controls  
Determines which state to 

save, load, how to transition  
Example: MSR save -load list  

VM-entry controls  
Determines which state to 

load, how to transition  

Incl uding injecting events 

(interrupts, exceptions) on entry  
 

 



August  2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 30

Example VM-exit CausesExample VM-exit Causes

 Sensitive Instructions

• CPUID – Reports processor capabilities

• RDMSR, WRMSR – Read and write “Model-Specific Registers”

• INVLPG – Invalidate TLB Entry

• RDPMC, RDTSC – Read Perf Mon or Time-Stamp Counters

• HLT, MWAIT, PAUSE – Indicate Guest OS Inactivity

• VMCALL – New Instruction for Explicit Call to VMM

 Accesses to Sensitive State
• MOV DRx – Accesses to Debug Registers

• MOV CRx – Accesses to Control Registers

• Task Switch – Accesses to CR3

 Exceptions and Asynchronous Events

• Page Faults, Debug Exceptions, Interrupts, NMIs, etc.
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Some Example VM-Exit OptimizationsSome Example VM-Exit Optimizations

 VT-x provides various optimizations to minimize
frequency of VM exits:

 Shadow Registers and Masks

• Reads from CR0 and CR4 are satisfied from shadow registers
established by the VMM

• VM exits can be conditional based on the specific bits modified
on a CR write (via a mask)

 Execution-Control Bitmaps
• VM exits can be selectively controlled via bitmaps

(e.g., for exceptions, IO-port accesses)
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Some Example VM-Exit Optimizations (2)Some Example VM-Exit Optimizations (2)

 Time-Stamp Counter (TSC) Offsets

• VMM can supply an offset that is applied to reads of the TSC
during guest execution

• Eliminates VM exits on executions of RDTSC and reduces
distortions of “virtual time”

 External-interrupt Exiting

• External interrupts cause VM exits

• Interrupts never masked; no need for VM exits on CLI, STI, etc.

 Optimized Interrupt Delivery

• VMM can pend a “virtual interrupt” to a guest OS

• VM exit occurs only when guest-OS interrupt window is open

• Eliminates exits on most executions of CLI, STI, IRET, etc.
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VM Entry: Event InjectionVM Entry: Event Injection

 Allows VMM to inject events on VM entry:
• External interrupts

• NMI

• Exceptions (e.g., page fault)

 Injection occurs after all guest state is loaded

 Performs all the normal IDT checks, etc.

 Removes burden from VMM of emulating IDT, fault

checking, etc.
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How VT-x Closes Virtualization HolesHow VT-x Closes Virtualization Holes
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Excessive Faulting Avoided:
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- CLI / STI behavior optimized for pending v irtual interrupts



System Virtualization Case StudiesSystem Virtualization Case Studies
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VM0

Mem Virtualization: General PrinciplesMem Virtualization: General Principles

 Guest OS expects to control address translation
• Allocates memory, page tables, manages TLB consistency, etc.

 But, VMM must have ultimate control over phys mem
• Must map guest-physical address space to host-physical space

TLB
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PD PT

PT

Guest OS

VM1

Guest OS

VMM

CR3
PD PT

PT

Host

Hardware
Memory

Memory Virtualization
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A Case Study: IA-32 Address TranslationA Case Study: IA-32 Address Translation

 IA-32 defines a hierarchical page-table structure

• Defines linear-to-physical address translation

• After page-table walk, page-table Entries (PTEs) are cached in a hardware TLB

 IA-32 address translation configured via control registers (CR3, etc.)

 Invalidation of PTEs signaled by OS via INVLPG instruction
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PD
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Virtualizing Page Tables: Some OptionsVirtualizing Page Tables: Some Options

 Option 1: Protect access to guest-OS page tables (PTs)
• Use paging protections or binary translation to detect changes

• Upon write access, substitute remapped phys address in PTE

• Also need VM exit on page-table reads (to report original PTE
value to guest OS)

 Option 2: Make a shadow copy of page tables
• Guest OS freely changes its page tables

• VM exit occurs whenever CR3 changes

• VMM copies contents of guest page tables to active page tables

• Copy operation is analogous to a TLB refill, hence: “Virtual TLB”

 Details of option 2 follow
• As illustration of the use of VT-x…
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Virtual TLB: Basic IdeaVirtual TLB: Basic Idea

 VTLB = Processor TLB + Active Page Table
• VMM initializes an empty VTLB and starts guest execution

• When guest accesses memory, #PF occurs, and is sent to VMM

• VMM copies needed translation (VTLB refill) and resumes guest

TLB

VM

Guest OS

VMM

CR3
PD PT

PT

VTLB

CR3
PD PT

PT

Guest Page Table

Active

Page Table
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Virtual TLB: VT-x SetupVirtual TLB: VT-x Setup

 VTLB algorithm programs VMX to cause VM exits on:
• Any writes to CR3 and relevant writes to CR0 and CR4

• Any page-fault (#PF) exceptions

• Any executions of INVLPG

VMCS

VM-execution Controls

   CR0 guest / host mask

   CR4 guest / host mask

   CR0 read shadow

   CR4 read shadow

Set INVLPG exiting = 1

MOV CR3 and task switch always cause ex its

   Exception bitmap
Bitmap set to cause ex its on #PF exceptions

Guest / host masks for both CR0 and CR4 set

to protect paging-related bits.

Read shadows for CR0 and CR4 set to follow

guest values (may differ from actual values).
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Virtual TLB: Actions on CR3 WriteVirtual TLB: Actions on CR3 Write

 CR3 write implies a TLB flush and page-table change
• VMM notes new CR3 value (used later to walk guest PT)

• VMM allocates a new PD page, with all invalid entries

• VMM sets actual CPU CR3 register to point to the new PD page

CR3

Guest

Host

CR3 PD

PDE 0

0

0

P

Guest OS

write to CR3

causes VM exit

Put new CR3 value

into guest area of VMCS

and resume guest with

VMRESUME



August  2005 System Virtual Machines, HotChips 17 Tutorial, (c) 2005, Intel Corporation 42

Virtual TLB: Actions on a Page FaultVirtual TLB: Actions on a Page Fault

 VMM examines guest PT using faulting addr
• If relevant PTE or PDE is invalid (P=0), then the #PF must be

reflected to the guest OS.

• VMM configures VMCS for a “#PF vector-on-entry”

• Then resumes guest execution with a VMRESUME

CR3 PD

CR3 PD

PDE

PDE

Guest

Host

0

P

0

PGuest page

fault causes

a VM exit

Page fault reflected

back to guest using

“vector-on-entry” with

VMRESUME
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Virtual TLB: Actions on a Page Fault (2)Virtual TLB: Actions on a Page Fault (2)

 If guest page table indicates sufficient access, then…
• VMM allocates PT and copies guest PTE to the active PT

• PFN of active PTE remapped to new value as per VMM policy

• Other active PTE bits set as in guest PTE (e.g., P, G, U/S)

CR3 PD

CR3 PD

PDE

PDE

Guest

Host

1

P

PT

F
PTE 111000

PR/WU/SDAG

1

PGuest page

fault causes

a VM exit

User-level read access...
F

F

PT

PTE 110

PR/WU/SDAG

R
em

ap
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Virtual TLB: Actions on INVLPGVirtual TLB: Actions on INVLPG

 Guest OS permitted to freely modify its page tables

• Implies guest PTs and active PTs can become inconsistent

• This is okay!  (same as inconsistencies between PTs and TLB)

• If guest reduces access, signals via INVLPG, causing a VM exit

• VMM invalidates corresponding PTE in the active PT

Guest

Host

CR3 PD
.

.

.

PT F

F

CR3 PD

PDE

PTE 10PDE 1010

PR/WU/SDAG

.

.

.

PT F

F

1

P

1

P

PTE 000000

PR/WU/SDAG

Invalidation of guest PT doesn’t cause VM exit

INVLPG causes

VM exit

000000
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Virtual TLB: A few other detailsVirtual TLB: A few other details

 MP considerations (TLB shootdown)
• Each logical processor has its own VTLB (just as it has a TLB)

• TLB shootdown in software resolves down to cases shown
previously (e.g., INVLPG)

 Other Details
• Accessed and Dirty Bits require special treatment (emulated

through R/W and P page protections)

• Real-mode supported through an “identity” page table

 Other Optimizations
• Other VTLB refill policies possible (eager vs. lazy refill) with

different trade-offs

• Possible to maintain multiple shadow page tables to reduce
VTLB flush cost



System Virtualization Case StudiesSystem Virtualization Case Studies
IO-Device VirtualizationIO-Device Virtualization
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IO Virtualization: General PrinciplesIO Virtualization: General Principles

 Virtual device model presents

interface to guest operating system

 Physical device driver programs

and responds to actual device

hardware

Hypervisor Architecture

...

Hypervisor

VMnVM0

Guest OS

and Apps

Guest OS

and Apps

VM1

Guest OS

and Apps

Device Models (Top)

Device Drivers (Bottom)

Hosted Architecture

VMn

Host OS

Device

Drivers

Ring-0 VMM

“Kernel”

VM0

Guest OS

and Apps

User-level VMM

User

Apps

Device

Models

Virtual Device

Interface and Model

Physical Device

Interface and Driver
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Virtual and Physical Device InterfacesVirtual and Physical Device Interfaces

Virtual Device

Interface and Model

VM0

Guest OS

and Apps
Guest device driver programs

“virtual device” interface:
• Device Configuration Accesses

• IO-port Accesses

• Memory-mapped Device Registers

Physical Device

Interface and Driver

Physical device responds to commands:
• DMA transactions to host physical memory

• Physical dev ice interrupts

Physical Device

Interface and Driver

Virtual device model proxies

accesses to physical device driver:
• Possible translation of commands

• Translation of DMA addresses

Virtual Device

Interface and Model

VM0

Guest OS

and Apps
Virtual device model proxies

device activity back to guest OS:
• Copying (or translation) of DMA buffers

• Injection of “v irtual interrupts”

Physical Device

Device driver programs actual

physical IO device:
• Device configuration

• IO-port and MMIO accesses
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Case Study: IO Virtualization with VT-xCase Study: IO Virtualization with VT-x

 VT-x provides and IO-port bitmap execution control
• Enables VMM to intercept any IO-port accesses for bus

configuration or IO-device control

 VT-x provides paging controls to intercept MMIO
• VTLB-like algorithm can enforce VM exits on physical pages

with memory-mapped IO (MMIO) registers

Virtual Device

Interface and Model

VM0

Guest OS

and Apps
Guest device driver programs

“virtual device” interface:
• Device Configuration Accesses

• IO-port Accesses

• Memory-mapped Device Registers

Bits set as shown prev iously  to

implement VTLB algorithm

Bitmap set to cause ex its on

specific IO ports as needed

VMCS

VM-execution Controls

   IO-port bitmap

   Various Paging Controls
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IO Virtualization with VT-x (cont.)IO Virtualization with VT-x (cont.)

 VT-x Interrupt-window exiting

• Guest OS may not be interruptible (e.g., critical section)

• Interrupt-window exiting allows guest OS to run until it has
enabled interrupts (via EFLAGS.IF)

 VT-x Event Injection on VM entry

• Enables VMM to vector interrupt through guest IDT on VM entry

Virtual Device

Interface and Model

VM0

Guest OS

and Apps
Virtual device model proxies

device activity back to guest OS:
• Copying (or translation) of DMA buffers

• Injection of “v irtual interrupts”

Bit set to allow guest to run until

it is ready to accept interrupts

Used to inject a v irtual interrupt

when guest is ready

VMCS

VM-execution Controls

VM-entry  Controls

   Interrupt-information field

   Interrupt-window ex iting
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Summary and Wrap-upSummary and Wrap-up

 For more information on Intel® Virtualization

Technology (VT):
• http://www.intel.com/technology/computing/vptech/

 Questions?


