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IntroductionIntroduction

Why are virtual machines interesting?

They allow transcending of standard interfaces

(which often seem to be an obstacle to innovation)

They enable innovation in flexible, adaptive software &  hardware,
security, network computing (and others)

They involve computer architecture in a pure sense

Virtualization will be a key part of future computer systems

A fourth major discipline?  (with HW, System SW, Application SW)
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AbstractionAbstraction

 Computer systems are

built on levels of

abstraction

 Higher level of abstraction

hide details at lower levels

 Example: files are an

abstraction of a disk

file
file

abstraction

I/O devices

and

Networking

Controllers

System Interconnect

(bus)

Controllers

Memory

Translation

Execution Hardware

Drivers
Memory

Manager
Scheduler

Operating System

Libraries

Application

Programs

Main

Memory

Software

Hardware
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VirtualizationVirtualization

 Similar to abstraction

Except

• Details not necessarily hidden

 Construct Virtual Disks

• As files on a larger disk

• Map state

• Implement functions

 VMs: do the same thing

with the whole “machine”

file
file

virtualization
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The The ““MachineMachine””

 Different perspectives on

what the Machine is:

 OS developer

   Instruction Set Architecture

• ISA

• Major division between hardware

and software
I/O devices

and

Networking

System Interconnect

(bus)

Memory

Translation

Execution Hardware

Application

Programs

Main

Memory

Operating System

Libraries
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The The ““MachineMachine””

 Different perspectives on

what the Machine is:

 Compiler developer

   Application Binary Interface

• ABI

• User ISA + OS calls
I/O devices

and

Networking

System Interconnect

(bus)

Memory

Translation

Execution Hardware

Application

Programs

Main

Memory

Operating System

Libraries
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The The ““MachineMachine””

 Different perspectives on

what the Machine is:

 Application programmer

   Application Program Interface

• API

• User ISA + library calls
I/O devices

and

Networking

System Interconnect

(bus)

Memory

Translation

Execution Hardware

Application

Programs

Main

Memory

Operating System

Libraries
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Hardware

"Machine"

OS

Applications

Virtualizing

Software
Virtual

Machine

OS

Applications

Guest

VMM

Host

Virtual MachinesVirtual Machines

add Virtualizing Software to a Host platform

and support Guest process or system on a Virtual Machine (VM)

Example: System Virtual Machine
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The Family of Virtual MachinesThe Family of Virtual Machines

 Lots of things are called “virtual machines”

    IBM VM/370

Java

VMware

Some things not called “virtual machines”, are virtual machines

     IA-32 EL

     Dynamo

         Transmeta Crusoe
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Taking a Unified ViewTaking a Unified View

    “The subjects of virtual machines and
emulators have been treated as entirely
separate.  … they have much in common. Not
only do the usual implementations have many
shared characteristics, but this
commonality extends to the theoretical
concepts on which they are based”

     -- Efrem G. Wallach, 1973
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System Virtual MachinesSystem Virtual Machines

 Provide a system

environment

 Constructed at ISA

level

 Persistent

 Examples: IBM

VM/360, VMware,

Transmeta Crusoe

guest
process

HOST PLATFORM

virtual

network communication

Guest OS

VMM

guest

process

guest
process

guest
process

Guest OS2

VMM

guest
process

guest
process
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Process VMsProcess VMs

 Execute application binaries with an ISA different from
hardware platform

 Couple at ABI level via Runtime System

 Not persistent

Virtualizing
Software

Application Process

Machine

OS

Hardware

Guest

Runtime

Host

Application Process

Virtual

Machine
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Process Virtual MachinesProcess Virtual Machines

 Guest processes may

intermingle with host

processes

 As a practical matter,

guest and host OSes

are often the same

 Same-ISA Dynamic

optimizers are a

special case

 Examples: IA-32 EL,

FX!32, Dynamo

 

HOST OS

Disk

file sharing

network communication

guest
process

create

host

process

guest

process

runtime
runtime

guest

process

runtime

host

process
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HLL VMsHLL VMs

 Java and CLI are recent examples

 Binary class files are distributed

 “ISA” is part of binary class format

 OS interaction via APIs (part of VM platform)

Sparc

Workstation

Java Binary Classes

x86

PC

Apple

Mac

VM

implementation

VM

implementation

VM

implementation

Java VM

Architecture
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Co-Designed VMsCo-Designed VMs

VLIW

Windows

X86 Apps

 Perform both translation and
optimization

 VM provides interface between
standard ISA software and
implementation ISA

 Primary goal is performance or
power efficiency

 Use proprietary implementation ISA

 Transmeta Crusoe and IBM Daisy
best-known examples
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CompositionComposition

ISA 2

OS 1

apps 2

OS 1

apps 1



August  2005 VM Intro (c) 2005, J. E. Smith 18

Composition: ExampleComposition: Example

Java application

Linux x86

JVM

Windows x86

VMware

Crusoe VLIW

Code Morphing
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Summary (Taxonomy)Summary (Taxonomy)

VM type (Process or System)

Host/Guest ISA same or different

Multiprogrammed

Systems

Java VM

MS CLI

Transmeta

Crusoe 

same ISA
different

ISA

Process VMs System VMs

Virtual PC 

for Mac

different

ISA
same ISA

IBM VM/370

VMware

HP

Dynamo

 

IA-32 EL

FX!32
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Tutorial TopicsTutorial Topics

 Introduction & VM Overview

 Emulation: Interpretation & Binary Translation

 Process VMs & Dynamic Translators

 HLL VMs

 Co-Designed VMs

 System VMs



Emulation: Interpretation andEmulation: Interpretation and

Binary TranslationBinary Translation
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Key VM TechnologiesKey VM Technologies

 Emulation: binary in one ISA is executed
on processor supporting a different ISA

 Dynamic Optimization: binary is improved
for higher performance

• May be done as part of emulation

• May optimize same ISA (no emulation needed)

HP PA ISA

HP UX

HP Apps.

Optimization

Alpha

Windows

X86 apps

Emulation
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DefinitionsDefinitions

NOTE  -- there are no standard definitions…

 Emulation:

• A method for enabling a (sub)system to present the same
interface and characteristics as another.

• E.g.  the execution of programs compiled for instruction set
A on a machine that executes instruction set B.

 Ways of implementing emulation

• Interpretation:  relatively inefficient instruction-at-a-time

• Binary Translation:  block-at-a-time optimized for repeated
instruction executions
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DefinitionsDefinitions

 Guest

• Environment that is being supported

by underlying platform

 Host

• Underlying platform that provides

guest environment

Guest

Host

supported by
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DefinitionsDefinitions

 Source ISA or binary
• Original instruction set or binary

I.e. the instruction set to be emulated

 Target ISA or binary
• Instruction set being executed by processor

performing emulation

I.e. the underlying instruction set

Or the binary that is actually executed

Sometimes Confusing terminology, e.g.
shade:
Target -> Host

 Source/Target refer to ISAs;
Guest/Host refer to platforms.

Source

Target

emulated by
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InterpretersInterpreters

 HLL Interpreters have a very long history

• Lisp

• Perl

• Forth (notable for its threaded interpretation model)

 Binary interpreters use many of the same
techniques

• Often simplified

• Some performance tradeoffs are different

E.g. the significance of using an intermediate form
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Interpreter StateInterpreter State

 Hold complete source state in interpreter’s

data memory

Code

Data

Stack

Program Counter

Condition Codes

Reg 0

Reg 1

Reg n-1

.

.

.

Interpreter Code
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Decode-Dispatch InterpretationDecode-Dispatch Interpretation

while (!halt) {

   inst = code(PC);

   opcode = extract(inst,31,6);

   switch(opcode) {

  case LdWordAndZero:LdWordAndZero(inst);

  case ALU: ALU(inst);

  case Branch: Branch(inst);

  . . .}

}

Instruction function list
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Instruction Functions: LoadInstruction Functions: Load

LdWordAndZero(inst){

RT = extract(inst,25,5);

RA = extract(inst,20,5);

displacement = 

extract(inst,15,16);

source = regs[RA];

address = source + displacement ;

regs[RT] = data[address];

PC = PC + 4;

}
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Decode-Dispatch: EfficiencyDecode-Dispatch: Efficiency

 Decode-Dispatch Loop

• Mostly serial code

• Several jumps/branches (some hard-to-predict)

 Executing an add instruction

• Approximately 20 target instructions

• Several loads/stores

• Several shift/mask steps

 Hand-coding can lead to better performance

• Example: DEC/Compaq FX!32

Software pipelined decode-dispatch loop
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Binary TranslationBinary Translation

 Generate “custom” code for every
source instruction

• Get rid of repeated instruction “parsing” and
jumps altogether
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Optimization: Register MappingOptimization: Register Mapping

 Reduces loads/stores

significantly

 Easier if

#target regs > #source regs

 Register mapping may

be on a per-block basis

If #target registers not

enough

program counter

stack pointer

source ISA target ISA

R3

R2

reg 1

reg 2

reg n

R2

R6

RN+4

Source Memory

Image

Source Register

Block
R1

R5
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Binary Translation ExampleBinary Translation Example

x86 Source Binary

addl %edx,4(%eax)

movl 4(%eax),%edx

add %eax,4

Translate to PowerPC Target

r1 points to x86 register context block

r2 points to x86 memory image

r3 contains x86 ISA PC value

r4 holds x86 register %eax

r7 holds x86 register %edx

etc.
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Binary Translation ExampleBinary Translation Example

addi r16,r4,4 ;add 4 to %eax 

lwzx r17,r2,r16 ;load operand from memory

add   r7,r17,r7 ;perform add of %edx

stwx r7,r2,r16 ;store %edx value into memory  

mr r4,r16 ;move update value into %eax

addi r3,r3,9 ;update PC (9 bytes)

x86 Source Binary

addl %edx,4(%eax)

movl 4(%eax),%edx

add %eax,4

PowerPC Target
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The Code Discovery ProblemThe Code Discovery Problem

 In order to translate, emulator must be

able to “discover” code

• Easier said than done; especially w/ x86

source ISA

instructions

inst. 1 inst. 2

inst. 3 jump

data

inst. 5 inst. 6

uncond. brnch

inst. 8jump indirect to???

data in instruction

stream

pad for instruction

alignment

reg.

pad
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Dynamic TranslationDynamic Translation

 First Interpret

• And perform code discovery as a byproduct

 Translate Code

• Incrementally, as it is discovered

• Place translated blocks into Code Cache

• Save source to target PC mappings in lookup table

 Emulation process

• Execute translated block to end

• Lookup  next source PC in table

If translated, jump to target PC

Else interpret and translate
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Dynamic TranslationDynamic Translation

Emulation

Manager

source

binary

Translation

Memory

SPC to TPC

Lookup

Table

hit

miss

translatorInterpreter
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Flow of ControlFlow of Control

 Control flows between translated blocks and Emulation

Manager

...

...

translation

block

Emulation

Manager

translation

block

translation

block
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Tracking the Source PCTracking the Source PC

 Can always update SPC as part of translated code

 Better to place SPC in stub

...

...

Code
Block

Branch and Link to EM
Next Source PC

Emulation

Manager

Hash

Table

Code

Block

General Method:

• Translator returns to EM via BL

• Source PC placed in stub
immediately after BL

• EM can then use link register to
find source PC and hash to next
target code block
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ExampleExample

4FD0: addl %edx,(%eax) ;load and accumulate sum
movl (%eax),%edx ;store to memory
sub %ebx,1 ;decrement loop count
jz 51C8 ;branch if at loop end

4FDC: add %eax,4 ;increment %eax
jmp 4FD0 ;jump to loop top

51C8: movl (%ecx),%edx ;store last value of %edx
xorl %edx,%edx ;clear %edx
jmp 6200 ;jump elsewhere

x86 Binary

9AC0: lwz r16,0(r4) ;load value from memory

add r7,r7,r16 ;accumulate sum

stw r7,0(r5) ;store to memory

addic. r5,r5,-1 ;decrement loop count, set cr0

beq cr0,pc+12 ;branch if loop exit

bl F000 ;branch & link to EM

4FDC ;save source PC in link register

9AE4: bl F000 ;branch & link to EM

51C8 ;save source PC in link register

9C08: stw r7,0(r6) ;store last value of %edx

xor r7,r7,r7 ;clear %edx

bl F000 ;branch & link to EM

6200 ;save source PC in link register

PowerPC Translation
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Continue execution

HASH TABLE

SPC

51C8

TPC

9C08

link

//////

ExampleExample

9AC0: lw z r16,0(r4) ;load value from memory

add r7,r7,r16 ;accumulate sum

stw r7,0(r5) ;store to memory

addic. r5,r5,-1 ;decrement loop count, set cr0

beq cr0,pc+12 ;branch if loop exit

bl F000 ;branch & link to EM

4FDC ;save source PC in link register

9AE4: bl F000 ;branch & link to EM

51C8 ;save source PC in link register

9C08: stw r7,0(r6) ;store last value of %edx

xor r7,r7,r7 ;clear %edx

bl F000 ;branch & link to EM

6200 ;save source PC in link register

PowerPC Translation

2
6

1

3

4

8

9

10

F000: mflr r20 ;retrieve address in link register

lwz r20,0(r20) ;load SPC from stub

slwi r21,r20,16 ;perform halfword shift left

xor r21,r21,r20 ;perform XOR hash

srwi r21,r21,12 ;finish hash - logical shift

lwzux r26,r21,r30 ;access at hash address w/update

;r30 points to map table base

cmpw CR0,r26,r20 ;compare for hit

beq CR0, run ;use target address

b lookup_translate ;else follow hash chain

run: lwz r27,4(r21) ;read target address from table

mtlr r27 ;branch to next translated block

blr

lookup_translate: follow hash chain, if hit, branch to TPC

If miss, branch to translate

Emulation Manager

5

7
Stub BAL to Emulation Mgr.

EM loads SPC from stub, using link

EM hashes SPC and does lookup

EM loads SPC from hash tbl; compares

Branch to transfer code

Load TPC from hash table

Jump indirect to next translated block

8

9

10

1 Translated basic block is executed

Branch is taken to stub2

3

4

5

6

7
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Translation ChainingTranslation Chaining

 Jump from one translation directly to next

• Avoid switching back to Emulation Mgr.

Without Chaining: With Chaining:

translation

block

EM

translation

block

translation

block

translation

block

EM

translation

block

translation

block

translation

block
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Software Jump PredictionSoftware Jump Prediction

 Form of “Inline Caching”

 Example Code:

Say Rx holds source branch address

• addr_i  are predicted addresses (in probability order)

Determined via profiling

• target_i are corresponding target code blocks

If Rx == addr_1 goto target_1

Else if Rx == addr_2 goto target_2

Else if Rx == addr_3 goto target_3

Else hash_lookup(Rx) ; do it the slow way
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Source/Target ISA IssuesSource/Target ISA Issues

 Register architectures

 Condition codes

• Lazy evaluation as needed

 Data formats and operations

• Floating point

• Decimal

• MMX

 Address resolution

• Byte vs Word addressing

 Address alignment

• Natural vs arbitrary

 Byte order

• Big/Little endian
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Emulation SummaryEmulation Summary

 Decode/Dispatch Interpretation

• Memory Requirements: Low

• Startup: Fast

• Steady State Performance: Slow

• Portability: Excellent

source code

dispatch

loop

interpreter

routines

"data"

accesses
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Emulation SummaryEmulation Summary

 Binary Translation

• Memory Requirements: High

• Startup: Very Slow

• Steady State Performance Fast

• Portability: Poor

source code

binary

translator

binary translated

target code



Process Virtual MachinesProcess Virtual Machines
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Process Virtual MachinesProcess Virtual Machines

 Perform guest/host
mapping at ABI level

 Encapsulate guest
process in process-
level runtime

 Issues
• Memory Architecture

• Exception Architecture

• OS Call Emulation

• Overall VM Architecture

• High Performance
Implementations

• System Environments

network communication

 

HOST OS

Disk

file sharing

guest
process

create

host

process

guest

process

runtime
runtime

guest

process

runtime

host

process
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Process VM ArchitectureProcess VM Architecture

Initialization

Code Cache

Code Cache

Manager

OS Call Emulator
Exception

Emulation

Application Memory Image

Host  Operating System

Initialize

signals

Exception

Side Tables

Emulation Engine

Interpreter

Translator

Profile

Data
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Runtime ComponentsRuntime Components

 Initialization
• Allocate Memory

• Initialize runtime data structures

• Initialize all signals

 Code Cache Manager
• Implement replacement algorithm when cache fills

• Flush when required (e.g. self-modifying code)

 OS Call Emulator
• Translate OS Calls

• Translate OS Responses

 Exception Emulator
• Handle signals

If registered by source code, pass to emulated source handler

If not registered emulate host response

• Form precise state
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State MappingState Mapping

 For best performance
• Guest register space fits

“inside” host register
space

• Guest memory space fits
“inside” host memory
space

• Best case does not
always happen

• But often does (x86 on
RISC)

Guest Code

Guest Data

Runtime Data

Runtime Code

Guest

Registers

Host Registers

Host  ABI

Address

 Space

Host

Register

 Space
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Software MappingSoftware Mapping

 Runtime Software

maintains mapping table

• Similar to hardware page

tables/TLBs

• Slow, but can always be

made to work
mapping

table

Guest

Application

Address

Space

Host

Application

Address

Space

Runtime

Software
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Direct (Hardware) MappingDirect (Hardware) Mapping

 VM software mapping is slow

• Several instructions per load/store

 Use underlying hardware

• If guest address space + runtime  fit within host space

Guest

Application

Address
Space

Guest

Application
Address
Space

Runtime
Software

Guest

Application
Address
Space

Guest
Application

Address
Space

Runtime
Software

+base

addr

(a) (b)



August  2005 VM Intro (c) 2005, J. E. Smith 54

Guest Memory ProtectionGuest Memory Protection

 Runtime must be protected from Guest process

 VM software mapping can be easily used

• Place (and check) protection info in mapping table

 Better: use underlying hardware

• Runtime must be able to set privileges

• Protection faults should be reported to Runtime

(So it can respond as guest OS would – later)

• Requires some support from Host OS



August  2005 VM Intro (c) 2005, J. E. Smith 55

Host OS SupportHost OS Support

 A system call where runtime can set protection levels

 A signal mechanism where protection faults trap to handler in
runtime

 SimOS Example

• Map guest space to a file (map, unmap, read-only mapping)

• Signal (SIGSEGV) delivered to VM software on fault

Virtual Machine's
Virtual Address Space

references succeed

references cause

page faults

references succeed

writes cause

protection faults

Free Pages

Physical Memory File

(VM Memory)

Read-Only Mappings
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Self-Modifying CodeSelf-Modifying Code

 Write-Protect original code to
catch code self-modification

 Exception handler invalidates
old translations

 Be sure to make forward
progress

 Pseudo self-modifying code
may require optimizations

• Data mixed in with code

• Implement software-supported
fine-grain checking (Transmeta)

 Sometimes can rely on source
binary to indicate self
modification e.g. SPARC flush

trans-

lator

original code translated code

data

write protected
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Self-referencing codeSelf-referencing code

 Original copy is maintained by translator

 All reads are with respect to original copy ⇒ correct

data is returned

trans-

lator

original code translated code

data

self reference
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Exceptions: InterruptsExceptions: Interrupts

 Application may register some interrupts

• Precise state easier than traps

(because there is more flexibility wrt location)

 Problem: Translated blocks may executed for an

unbounded time period

 Solution:

• Interrupt signal goes to runtime

• Runtime unchains translation block currently executing

(eliminates loops)

• Runtime returns control to current translation

• Translation soon reaches end (and precise state is available)

 If interrupts are common, runtime may inhibit all

chaining
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Exceptions: TrapsExceptions: Traps

 Can be detected directly via interpretation
• or explicit translated code checks

 Can be detected indirectly via target ISA trap and
signal

• Runtime registers all trap conditions as signals

 Semantic “matching”
• If trap is architecturally similar in target in source then

trap/signal may be used

• Otherwise interpretive method must be used

 Generally, more difficult than interrupts wrt precise
state
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Precise State: Program CounterPrecise State: Program Counter

 Interpretation: Easy – source PC is maintained

 Binary translation: more difficult – source PC only
available at translation block boundaries

• Trap PC is in terms of target code

• Target PC must be mapped back to correct source PC

 Solution
• Use side table and reverse translate

• Can be combined with PC mapping table

• Requires search of table to find trapping block

• Reconstruct block translation to identify specific source PC of
trapping instruction
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PC Side TablePC Side Table

block A

block B

code cache

.

.

.
block N

Start PC A

side table

Block Formation Info

source code

trap occurs

signal returns target PC

binary search

side table

find corresponding

source PC

1

2

3

5

target PCs

Start PC B

Start PC N

Re-analyze

source code

4

Block Formation Info

find source code start

information
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Recovering Register StateRecovering Register State

 Simple if target code updates register state in same
order as source code

• Register state mapping can be used to generate source register
values

 More difficult if optimizations reorder code
• Implement software version of reorder buffer or checkpoints
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Recovering Memory StateRecovering Memory State

 Simple if target code updates memory state in same
order as source code

• Restricts optimizations (more difficult to back-up than register
state)

• Most process VMs maintain original store order
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OS Call EmulationOS Call Emulation

 “Wrapper” or “Jacket” code converts source

call to target OS call(s)

Source code segment

.

.

s_inst1

s_inst2

s_system_call X

s_inst4

s_inst5

.

.

Target  code segment

.

.

t_inst1

t_inst2

jump runtime

t_inst4

t_inst5

.

.

Runtime

wrapper code

copy/convert arg1

copy/convert arg2

.

.

t_system_call X

copy/convert return val

return to t_inst4

Binary

Translation
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OS Call EmulationOS Call Emulation

 Same source and target OSes (different ISAs)
• Syntactic translation only

• E.g. pass arguments in stack rather than registers

 Different source and target OSes
• Semantic translation/matching required

Similar to inter-OS porting

• May be difficult (or impossible)

• OS deals with real world

What if source OS supports a type of device that the
target does not?
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High Performance EmulationHigh Performance Emulation

 Important tradeoff
• Startup time -- Cost of converting code for emulation

• Steady state -- Cost of emulating

 Interpretation:
• Low startup, high steady state cost

 Binary translation
• High startup, low steady state cost

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100

N - Number of Times Emulated

T
o

ta
l 

E
m

u
la

ti
o

n
 T

im
e

interpretation

binary translation
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Staged EmulationStaged Emulation

 Adjust optimization level to execution frequency

 Tradeoff

•Total runtime = program runtime + translation overhead

•Higher optimization ⇒ shorter program runtime

•Lower optimization ⇒ lower overhead

Binary Memory Image Code CacheProfile Data

Interpreter

Translator/

Optimizer

Emulation

Manager
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Staged EmulationStaged Emulation

 General Strategy

1. Begin interpreting

2. For code executed above a threshold

Use simple translation/optimization

3. For translated code executed above a threshold

Optimize more

• etc.

 Specific Strategies may skip some of the steps

• Shade uses  1 and 2

• Wabi uses 2 and 3

• FX!32 uses 1 and 3

• IA32-EL, UQDBT use 2 and 3
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Code Cache ManagementCode Cache Management

 Code Cache is different from typical hardware cache

• Variable sized blocks

• Dependences among blocks due to linking

• No “backing store”; re-generating is expensive

 These factors affect replacement algorithm

• LRU replacement is typically not used

(fragmentation problems)
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Flush When FullFlush When Full

 Simple, basic algorithm

 Gets rid of “stale” links if control flow changes

 High overhead for re-translating after flush
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Pre-emptive FlushPre-emptive Flush

 Flush when program phase change is detected

• Many new translations will be needed, anyway

 Detect when there is a burst of new translations

 Dynamo does this

detect working set
change and flush
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Coarse-Grain FIFOCoarse-Grain FIFO

 Replace many blocks

at once

• Large fixed-size blocks

• Only backpointers

among replacement

blocks need to be

maintained

• OR linking between

large blocks can be

prohibited.

.

.

.

FIFO

 block A

FIFO

 block B

FIFO

 block D

Code Cache Backpointer

Tables
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System EnvironmentSystem Environment

 High level of

interoperability

 Seamless  access to

both guest and host

processes

 Works best with same

OS

 

HOST OS

Disk

file sharing

guest
process

create

host

process

guest

process

runtime
runtime

guest

process

runtime

host

process
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EncapsulationEncapsulation

 Guest code is
“encapsulated”

• At creation by loader

• DLLs at load time

 Creation
• Host can create guest

• Guest can create host

 DLLs
• Guest can use guest or

host

• Host uses only host

Host Process

Guest Process

create

Host Process

Host Process

create

Guest Process

create

create

Host

DLL

Guest

DLL

Host

DLL
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LoadersLoaders

 Requires two loaders

• One for host processes

• One for guest processes

 Approaches

• Modify kernel loader

Identifies type of binary, calls correct loader

Requires modification of kernel loader

• Add code to guest binary when installed

Invokes guest loader

Requires local installation of guest binary

• Modify host process create_process API

Invokes guest loader for guest binaries

Modifies create_process in host binaries

Used in FX!32
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PersistencePersistence

 How long do translations last?

• One ABI instantiation

Re-translate each time an ABI is initiated

• Multiple ABI instantiations

Save translation/profile data on disk

Is it faster to optimize or read from disk?

A lot of instructions can execute in a few milliseconds
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Example: FX!32Example: FX!32

 x86/Windows ABIs on Alpha/Windows

 Runtime software

• Follows typical model

• But, translations/optimizations are done between executions

First execution of binary: interpret and profile

Translate and optimize “off line”

Later execution(s): use translated version, continue profiling

 Persistence

• Translations and profile data are saved on disk between runs

Very time consuming optimization with x86 source

Hybrid static/dynamic binary translation
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PerformancePerformance

 (comparing 200 MHz Pentium Pro and 500 MHz 21164)

 Goal: same as high-end x86

 Byte benchmark integer ≈ 40%  faster than Pentium Pro

 Flt point ≈ 30% slower than Pentium Pro

 Achieves 70% of native alpha performance



Dynamic Binary OptimizationDynamic Binary Optimization
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Optimization ExampleOptimization Example

(a)

Basic Block 1
. . .

. . .

R3 <- …

R7 <- ...

R1 <- R2 + R3

Br L1 if R3 ==0

L1:  R1 <- 0

          …

          ...

Basic Block 3

Basic Block 2

. . .

R6 <- R1 + R6

…

...

Superblock

. . .

. . .

R3 <- …

R7 <- ...

Br L2 if R3 !=0

       R1 <- 0

          …

          ...

Basic Block 2

L2:  . . .

      R6 <- R1 + R6

      …

      ...

Compensation code

R1 <- R2 + R3

(b)
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ProfilingProfiling

 Collect statistics about a program as it runs
• Branches (taken, not taken)

• Jump targets

• Data values

 Predictability allows these statistics to be used for
optimizations to be used in the future

 Profiling in a VM differs from traditional profiling
used for compiler feedback

• E.g. can’t do overall analysis before inserting probes
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Types of ProfilesTypes of Profiles

 Block or node profiles
• Identify “hot” code blocks

• Fewer nodes than edges

 Edge profiles
• Give a more precise idea of program flow

• Block profile can be derived from edge profile (not vice versa)
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Collecting ProfilesCollecting Profiles

 Instrumentation-based
• Software probes

Slows down program more

Requires less total time

• Hardware probes

Less overhead than software

Less well-supported in processors

Typically event counters

 Sampling based
• Interrupt at random intervals and take sample

Slows down program less

Requires longer time to get same amount of data

• Not useful during interpretation
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Improving Locality: Procedure InliningImproving Locality: Procedure Inlining

Call proc xyz

Proc xyz

Return

Call proc xyz

A

K

L

B

X

.

.

.
Y

Z

A

K

L

B

.

.

.

Y

X

X

Z

 User partial inlining

• Unlike static full inlining

• Follow dominant flow of

control
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Improving Locality: TracesImproving Locality: Traces

 Proposed by Fisher

(Multiflow)

• Used overall profile/analysis

 Join points sometimes

inhibit optimizations

 Join points detected

incrementally

⇒ bookkeeping

 Typically not used in

optimizing VMs

Trace 1

Trace 3

Trace 2
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Improving Locality: SuperblocksImproving Locality: Superblocks

 One entry multiple exits

 May contain redundant blocks (tail duplication)

 Commonly used in optimizing VMs
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Superblock FormationSuperblock Formation

 Start Points
• When block use reaches a threshold

• Profile all blocks (UQDBT)

• Profile selected blocks (Dynamo)

Profile only targets of backward branches (close loops)

Profile exits from existing superblocks

 Continuation
• Use hottest edges above a threshold (UQDBT)

• Follow current control path (most recent edge) (Dynamo)

 End Points
• Start point of this superblock

• Start point of some other superblock

• When a maximum size is reached

• When no edge above threshold can be found (UQDBT)

• When an indirect jump is reached (depends on whether inlining is
enabled)
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Dynamic Optimization OverviewDynamic Optimization Overview
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Case Study: Intel IA-32 ELCase Study: Intel IA-32 EL

 Software method for running IA-32 binaries
on IPF

• Previous approach was in hardware

 Runs with both Windows and Linux

• OS independent section (BTgeneric)

• OS dependent section (BTlib)

 Two stages

• Fast binary translation (cold code)

• Optimized binary translation (hot code)

 Precise traps are an important consideration
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Operating System InteractionOperating System Interaction

 Process level runtime

 Supports Windows and Linux

• BTlib is implementation dependent part

• About 1% of total code

 Initializes structures

 Translates OS calls

 Handles exceptions
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IA-32 OptimizationsIA-32 Optimizations

 Floating point/MMX

• IPF uses large flat register file

• IA-32 uses stack register file

• IA-32 TAG indicates valid entries

• IA-32 aliases MMX regs to FP regs

 Speculate common case usage  and put
guard code at beginning of block

 Examples:

• TOS (Top of Stack) same for all block executions

• No invalid accesses (indicated by TAG)

• 99-100% accurate

 Data Misalignment

• Similar to FX!32

• See paper for details
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IA-32 EL PerformanceIA-32 EL Performance

 Comparison with native

IPF performance

• Provides 65% performance

(Gmean)

• mcf performs better because

it has a 32-bit data footprint

rather than 64-bits
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IA-32 EL PerformanceIA-32 EL Performance

 Where the time is spent

• SPEC – mostly in hot code; very

little overhead

• Sysmark – only 45% hot code;

22% in OS (IPF code)
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 Objective: optimize binaries on-the-fly

• Many binaries are un-optimized or are at a low optimization
level

 Initial emulation can be done very efficiently

• “Translation” at basic block level is identity translation

• Initial sample-based profiling is attractive

Original code can be used, running at native speeds

 Code patching can be used

• Patch code cache regions into original code

• Replace original code with branches into code cache (saves
code some code duplication)

• Can avoid hash table lookup on indirect jumps

 Can bail-out if performance is lost

Same-ISA OptimizationSame-ISA Optimization



August  2005 VM Intro (c) 2005, J. E. Smith 95

Code Patching ExampleCode Patching Example

Source Binary

Superblock

Cache

patch

C

W

link

X

B

G

Y

patch

patch indirect jump

A
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Case Study: HP DynamoCase Study: HP Dynamo

 Maps HP-PA ISA onto itself

 Improved optimization is goal

Fragment Cache

interpret until
taken branch

lookup branch
target in cache

start-of-trace
condition?

miss

jump to top of
fragment in  cache

increment counter
assoc. w ith

branch target addr

counter value
exceeds hot
threshold?

interpret + codegen
until taken branch

end-of-trace
condition?

create new
fragment and

optimize it

emit into cache, link w ith
other fragments & recycle

the associated counter

signal
handler

noyeshit

yes

yes no

O
S

 s
ig

n
a
l

native instruction

stream

no
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Superblock SelectionSuperblock Selection

 Does not use hardware counters, PC sampling, or
path sampling

  Interpreter performs MRET

• Most Recently Executed Tail

• Associate a counter with superblock-start points

• If counter exceeds threshold then trigger instruction
collection

• At superblock-end, collected instructions are “hot superblock”

• Concept: when an instruction becomes hot, the very next
sequence will also be hot

• Simple, small counter overhead

 No profiling on fragments

• No overheads

• Problem if branch behavior changes

• Fragment cache is occasionally flushed…



August  2005 VM Intro (c) 2005, J. E. Smith 98

Prototype ImplementationPrototype Implementation

 Conservative optimizations

• Allow recovery of state for synchronous traps

 Aggressive optimizations

• Do not allow recovery of state

• Include –

Dead code removal

Code sinking

Loop invariant code motion

 Start in aggressive mode, switch to conservative
mode if “suspicious” code sequence is encountered

 Bail out for ill-behaved code

• Unstable working sets

• Thrashing in the Fragment Cache
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PerformancePerformance

 Compare with +o2

 Biggest gain from inlining and improved code layout

 Conservative opts help about as much as aggressive

 Some benchmarks “bail-out”
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PerformancePerformance

 Outperforms +O2; +O4, but not

+O4 plus profiling

•This may be due to code layout

•Many  app developers do not profile
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Performance ConclusionsPerformance Conclusions

 Mostly useful for code optimized at low levels

 Dynamo ran on processor that stalled indirect jumps

• Baseline is slow compared with most superscalar processors

• Dynamo removes indirect jumps via procedure inlining

and inlined software jump prediction

 On other modern processors there is a significant
performance loss due to indirect jumps

• See Dynamo/RIO (x86)

• RIO project targets security, not performance



High Level Language VMsHigh Level Language VMs
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HLL VMsHLL VMs

 Goal: complete platform independence  for applications

 Similar to Process VMs

• Major  difference is specification level:

Virtual instruction set + libraries

• Instead of ISA  and OS interface

HLL Program

Intermediate Code

Memory Image

Object Code
(ISA)

Compiler front-end

Compiler back-end

Loader

HLL Program

Portable Code
(Virtual ISA   )

Host Instructions

Virt. Mem. Image

Compiler

VM loader

VM Interpreter/Translator

Traditional HLL VM
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UCSD P-CodeUCSD P-Code

 Popularized HLL VMs

 Provided highly portable version of Pascal

 Consists of

• Primitive libraries

• Machine-independent object file format

• Stack-based ISA

• A set of byte-oriented “pseudo-codes”

• Virtual machine definition of pseudo-code semantics
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Modern HLL VMsModern HLL VMs

 Superficially similar to P-code scheme
• Stack-based ISA

• Standard libraries

BUT, Objective is application portability, not compiler portability

 Network Computing Environment
• Untrusted software (this is the internet, after all)

• Robustness (generally a good idea)

=> object-oriented programming

• Bandwidth is a consideration

• Good performance must be maintained

 Two major examples
• Java VM

• Microsoft Common Language Infrastructure (CLI)
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TerminologyTerminology

 Java Virtual Machine Architecture  CLI

• Analogous to an ISA

 Java Virtual Machine Implementation CLR

• Analogous to a computer implementation

 Java bytecodes  Microsoft Intermediate
Language (MSIL), CIL, IL

• The instruction part of the ISA

 Java Platform  .NET framework

• ISA + Libraries; a higher level ABI
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Modern HLL VMsModern HLL VMs

 Compiler forms program files (e.g. class files)

• Standard format

• In theory any compiler can be used

 Program files contain both code and metadata

Metadata

Code

Machine Independent

Program File

Loader

Virtual Machine

Implementation

Interpreter

Internal Data

Structures

Translator Native Code
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Robustness: Object-OrientationRobustness: Object-Orientation

 Objects

• Data carrying entities

• Dynamically allocated

• Must be accessed via pointers or references

 Methods

• Procedures that operate on objects

• Method operating on an object is like “sending a message”

 Classes

• A type of object and its associated methods

• Object created at runtime is an instance of the class

• Data associated with a class may be dynamic or static
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SecuritySecurity

 A key aspect of modern
network-oriented VMs

 Rely on “protection
sandbox”

 Must protect:
• Remote resources (files)

• Local files

• Runtime from user process

 This is the first generation
security method – still the
default

Public File

Remote System

Other File

Local System

Accessible
Local File

application

VMM

Other
Local File

Network

User Process

Sandbox Boundary
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Protection SandboxProtection Sandbox

 Remote resources
• Protected by remote system

 Local resources
• Protected by security

manager

 VM software
• Protected via

static/dynamic checking

class file

class file
class file

class file

Emulation Engine loader

native
method

native
method

lib.
method lib.

method

loaded
method

loaded
method

loaded
method

loaded
method

loaded
method

loaded
method

Network, File System

trusted
trusted

trusted

local
file

security
agent
trusted

local
file

standard
libraries
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Garbage Collected HeapGarbage Collected Heap

 Objects are created and “float” in memory space

• Tethered by references

• In architecture, memory is unbounded in size

• In reality it is limited

 Garbage creation

• During program execution, many objects are created then
abandoned (become garbage)

 Collection

• Due to limited memory space, Garbage should be collected so
memory can be re-used

• Forcing programmer to explicitly free objects places more
burden on programmer

Can lead to memory leaks, reducing robustness

• To improve robustness, have VM collect garbage automatically
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Network FriendlinessNetwork Friendliness

 Support dynamic class file loading on

demand

• Load only classes that are needed

• Spread loading out over time

 Compact instruction encoding

• Use stack-oriented ISA (as in Pascal)

• Metadata also consumes bandwidth, however

Overall, it is probably a wash
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Java Java ““ISAISA””

 Includes

• Bytecode (instruction) definitions

• Metadata: data definitions and inter-relationships

 Formalized in class file specification
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Java Architected StateJava Architected State

 Implied Registers
• PC

• Stack Pointer

• etc.

 Stack
• Locals

• Operands

 Heap
• Objects

• Arrays (intrinsic objects)

 Class file contents
• Constant pool holds immediates

and other constant information
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Data AccessingData Accessing

opcode
opcode operand operand

opcode operand

opcode

opcode operand operand

opcode operand
opcode

opcode operand

Operands

Locals

Object

Object

Object

index

implied

index

Array

implied

HEAP

Instruction stream

STACK FRAME

CONSTANT
POOL

index
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Instruction SetInstruction Set

 Defined for class file, not memory
image

 Bytecodes

• One byte opcode

• Zero or more operands

Opcode indicates how many

 Can take operands from

• Instruction

• Current constant pool

• Current frame local variables

• Values on operand stack

Distinguish storage types and
computation types

opcode

opcode index

opcode index1 index2

opcode data

opcode data1 data2
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Instruction TypesInstruction Types

 Pushing constants onto the stack

 Moving local variable contents to and from the
stack

 Managing arrays

 Generic stack instructions (dup, swap, pop & nop)

 Arithmetic and logical instructions

 Conversion instructions

 Control transfer and function return

 Manipulating object fields

 Method invocation

 Miscellaneous operations

 Monitors
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Data MovementData Movement

 All data movement takes place through stack

opcode
opcode operand operand

opcode operand

Instruction stream

CONSTANT

POOL

operand

stack

locals

STACK FRAME

GLOBAL

STORAGE

ALU
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Bytecode ExampleBytecode Example

  

public int perimeter();

 PC      instruction
     0:   iconst_2

     1:   aload_0

     2:   getfield   #2;    //Field: sides reference

     5:   iconst_0

     6:   iaload

     7:   aload_0

     8:   getfield   #2;    //Field: sides reference

   11:  iconst_1

   12:  iaload

   13: iadd

   14:  imul

   15:  ireturn
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Stack TrackingStack Tracking

 Operand stack at any point in program has:

• Same number of operands

• Of same types

• In same order

Regardless of control flow path getting there

 Helps with static type checking
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Exception TableException Table

 Exceptions identified by table in class file

 Address Range where checking is in effect

 Target if exception is thrown

• Operand stack is emptied

 If no table entry in current method

• Pop stack frame and check calling method

• Default handlers at main

From    To    Target Type

    8    12      96 Arithmetic Exception
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Binary ClassesBinary Classes

 Formal ISA Specification

 Magic number and header

 Major regions preceded by

counts

• Constant pool

• Interfaces

• Field information

• Methods

• Attributes

Magic Number
Version Information

Constant Pool

Const. Pool Size

Access Flags
This Class

Super Class

Interfaces

Interface Count

Field Information

Field count

Methods count

Methods

Attributes Count

Attributes
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Java Virtual MachineJava Virtual Machine

 An abstract entity that gives meaning to
class files

 Has many concrete implementations

• Hardware

• Interpreter

• JIT compiler

 Persistence

• An instance is created when an application starts

• Terminates when the application finishes
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Structure of Virtual MachineStructure of Virtual Machine
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Structure of Virtual Machine, contd.Structure of Virtual Machine, contd.

 Method Area

• Type information provided by class loader

 Heap Area

• Contains objects created by program

 PC Register & Implied Registers

• Every created thread gets a set

 Java stacks

• Every created thread gets one

• Divided into Frames

• Contains state of method invocations for the thread

• Local variables, parameters, return value, operand stack

 Native method stacks

• Special area for implementation-dependent native methods
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Class Loader SubsystemClass Loader Subsystem

 Primordial loader

 Other loaders that are part of apps

 Tasks:

• Finds and imports binary information describing
type

• Verifies correctness of type

• Allocates and initializes memory for class variables

• Resolves symbolic references to direct references

• Invokes initialization code



August  2005 VM Intro (c) 2005, J. E. Smith 127

Protection Sandbox: Security ManagerProtection Sandbox: Security Manager

 A trusted class containing check methods

 Attached when Java program starts

• Cannot be removed or changed

 User specifies checks to be made

• Files, types of access, etc.

 Operation

• Native methods that involve resource accesses

(e.g. I/O)  first call check method(s)
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VerificationVerification

 Class files are checked when loaded

• To ensure security and protection

 Internal Checks

• Checks for magic number

• Checks for truncation or extra bytes

Each component specifies a length

• Make sure components are well-formed

 Bytecode checks

• Check valid opcodes

• Perform full path analysis

Regardless of path to an instruction contents of operand
stack must have same number and types of items

Checks arguments of each bytecode

Check no local variables are accessed before assigned

Makes sure fields are assigned values of proper type
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Java Native Interface (JNI)Java Native Interface (JNI)

 Allows Java and

native SW to

interoperate

• E.g. Java can call C

program (and vice versa)

• Native routines allow

access of Java data

Jav a HLL Program

Compile
and

Load

Bytecode

Methods

object
object

array

getfield/
putfield

C Program

Compile
and

Load

Nativ e Machine Code

inv oke nativ e method

Nativ e Data Structures

load/store

Java Side Native Side

JNI
get/put
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JVM Bytecode EmulationJVM Bytecode Emulation

 Interpretation

• Simple, fast startup, but slow

 Just-In-Time (JIT) Compilation

• Compile each method when first touched

• Simple, static optimizations

 Hot-Spot Compilation

• Find frequently executed code

• Apply more aggressive optimizations on that code

• Typically phased with interpretation or JIT

 Dynamic Compilation

• Based on Hot-Spot compilation

• Use runtime information to optimize
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Microsoft CLIMicrosoft CLI

 Common Language Infrastructure

 Part of  .NET framework

 Allows multiple HLLs and multiple Platforms

 Allows both verifiable and unverifiable

modules (class files)

• Verifiability is different from validity

• Unverifiable modules must be trusted by user

• Verifiable and unverifiable modules can be mixed (but

the program becomes unverifiable)
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Microsoft CLI InteroperabilityMicrosoft CLI Interoperability

C# program Java Program Managed C++ programVisual Basic.Net

Compile

Verifiable
Module

Compile

Verifiable
Module

Compile

Verifiable
Module

Compile

Unverifiable
Module

Common
Language Runtime

X86 Platform

Common
Language Runtime

IA-64 Platform
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Microsoft CLI and MSILMicrosoft CLI and MSIL

 Similar to Java and JVM

• Object oriented

• Stack-based ISA

 Some differences

• Broader in scope

• ISA not designed for interpretation

• Module can be valid (but not verifiable), verifiable, or

invalid

Support for C-like pointers and un-typed memory

blocks (not verifiable)
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Summary: HLL VMs vs. Process VMsSummary: HLL VMs vs. Process VMs

 Memory architecture

• Object model is less implementation-dependent

No compatibility problems due to size
limitations/differences

 Memory protection

• Pointers very carefully controlled

No rogue load/stores

 Precise Exceptions

• Exception checking is explicit (no masks)

• Operand stack imprecise within a method

• Locals imprecise if exception goes to higher level
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Summary: HLL VMs vs. Process VMsSummary: HLL VMs vs. Process VMs

 Instruction set dependences

• No registers

• No condition codes

 Code discovery

• Restricted, explicit control flow

• All code can be discovered at method entry

 Self Modify-Referencing Code

• Simply doesn’t exist



Co-Designed VMsCo-Designed VMs
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Co-Designed VMsCo-Designed VMs

 Design hardware and VM
software concurrently and
cooperatively

 Use proprietary target ISA

• Or modified ISA

 No native OS or applications

 Goal is performance or power
efficiency

• Not compatibility

 Techniques also applicable to
HW support for other VMs Hardware

VMM

 OS

 Applications

Cached
Translated

Code

Emulation/Translation
Software

Source ISA

Target ISA

Hidden
Software
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Concealed MemoryConcealed Memory

VM software resides in memory concealed from

all conventional software

Source ISA Data

Translation

Cache

VM Code

ICache
Hierarchy

DCache
Hierarchy

Processor

Core
Source ISA Code

VM Data

concealed memory

conventional
memory
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Precise ExceptionsPrecise Exceptions

 Traps must be precise wrt original binary

• All conventional software is unaware of underlying VM

• Code may undergo heavy duty re-organization

E.g. CISC → VLIW

 Checkpoint and rollback

• Have VMM periodically checkpoint state

• Consistent with a point in original binary

• On fault, rollback and interpret original binary

 In-order state update

• Keep out-of-order results in scratch registers, update

architected registers in-order

I.e. software renaming
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Checkpoint and RollbackCheckpoint and Rollback

Translation
Block A

Translation
Block B

Translation
Block N

set checkpoint

set checkpoint

set checkpoint

Translation
Block A

Translation
Block B

Source
Code

restore
checkpoint

interpret

trap
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Precise Interrupts via checkpoint/rollbackPrecise Interrupts via checkpoint/rollback

 As in Transmeta Crusoe

 Shadow  copies of registers

 Gated store buffer

 Code divided into translation
groups

• Precise state between groups

 Commit when trans. group is
exited

• Release gated store buffer

• Copy current registers into shadow

Crusoe x86

X86 regs shadow

scratch

spec. results

constants

At commit point
make shadow copy,
release gated stores &
establish new gate stores

gated store buffer
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Precise Interrupts via checkpoint/rollbackPrecise Interrupts via checkpoint/rollback

 When a trap occurs
• Flush store buffer

• Backup with shadow registers

• Interpret forward until trap
occurs

 Advantage:
• Larger precise interrupt units

=> coarser grain
optimizations, dead code
elimination, etc.

 Disadvantage:
• Store buffer size limits

translation unit size

Crusoe x86

X86 regs shadow

scratch

spec. results

constants

establish new gate for
stores

gated store buffer

On exception
restore from shadow copy,
squash gated stores &
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Page Fault CompatibilityPage Fault Compatibility

 Major difference wrt Process VMs

 All page faults in guest must be accurately

emulated

 Data accesses – no problem

• Detected via page table/TLB

 Instruction accesses – more difficult

• Fetches are from code cache, not guest memory

• Code cache pages are not related to guest pages
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Page CrossingsPage Crossings

A

B

C

A

B

C

D

E

F

G

H

I

J

D
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G
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I

J

no
jump to

VMM

yes

probe page table

K

L

probe page table

continue

execution

page

correctly

mapped?

no

yescontinue

execution

guest pages

code cache

K

L

page

correctly

mapped?

jump to

VMM
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Input/OutputInput/Output

 VMM itself uses no I/O

 Run guest I/O drivers as-is

• Let I/O drivers directly control I/O signals

 Problems w/ Memory-Mapped I/O

• Use access-protect in TLB to detect accesses to volatile pages

• De-optimize code that accesses volatile pages

• Enhance ISA w/ load/store opcodes that over-ride access-protect
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Case Study: Transmeta CrusoeCase Study: Transmeta Crusoe

 x86 to VLIW (4-way)

• Specialized Fields

 (ALU, LD/ST, FP, Br)

 16M Translation Cache

 8K bytes VMM local inst. mem.

• Reduces I cache pollution

 8K bytes VMM local data mem.

• Reduces D cache pollution

512 KBytes
compressed

VMM

2 MBytes

VMM

decompress

14 MBytes
Crusoe
Data &

Translations

8KB Local

Inst. Mem.

8KB Local

Prog. Mem.

64 KB
I-Cache

64 KB

D-Cache
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Transmeta Crusoe Block DiagramTransmeta Crusoe Block Diagram

L1 I-Cache
64B LInes

8-way
64 Kbytes

Local Program
Memory
8Kbytes

ALU1

ALU0
Shadow

GPRs
64 GPRs

FPU

Shadow
FPRs

32 FPRs

L1 D-Cache
32B LInes

16-way
64 Kbytes

L2 Cache
256Kbytes

4-way

Gated Store
Buffer

F
P

Ld
St

A
L
U

B
r
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Crusoe TranslationCrusoe Translation

 Staged optimization

• Interpretation (with profiling)

• Simple translation

• Highly optimized translation

 Algorithm translates “multiple basic blocks”
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Alias HardwareAlias Hardware

 To allow re-scheduling of memory ops

 Removal of redundant loads

 load-and-protect

• Special load opcode

• records load address and loaded data size in table

 store-under-alias-mask

• Special store opcode

• Checks specified (via mask) loads in table

• if conflict, triggers re-do of loads
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Alias Hardware ExampleAlias Hardware Example

 stam(W) traps if W==X or W==Z

 stam(Y)  traps if Y ==Z

Original Code

st (W)

. . .

ld (X)

. . .

st (Y)

. . .

ld (Z)

Optimized Code

ldp (X)   x

. . .

ldp (Z)   x x

. . .

stam (W)

. . .

stam (Y)
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Another Example: IBM AS/400Another Example: IBM AS/400

 A very early (and successful) co-designed VM

 Goals

• Hardware independence

Demonstrated by move to PowerPC

• Support robust/well integrated software

Re-define conventional software boundaries

Divided OS into implementation
independent/dependent parts

Architect object-orientation
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IBM AS/400  PlatformsIBM AS/400  Platforms

 System /38 – Proprietary implementation ISA

 AS/400 – First, extend proprietary ISA

    Then transition to PowerPC ISA

Proprietary Platform

Translator;

Implementation-Dep. OS

OS/400

User Applications

IMPI

MI & LIC

PowerPC Platform

Translator;

Implementation-Dep. OS

OS/400

User Applications

MI & LIC

PowerPC

  


