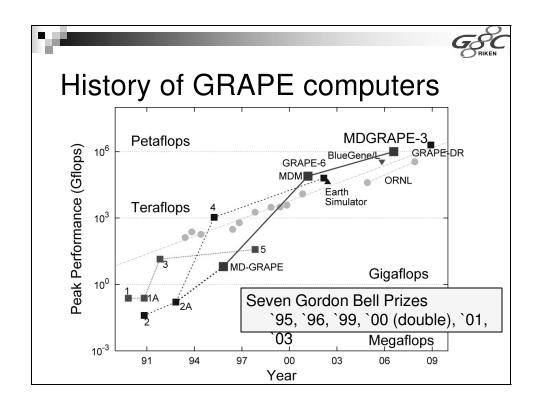
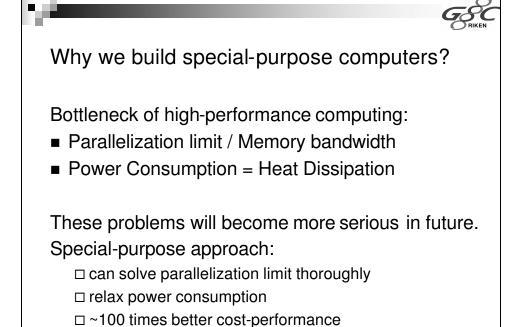


Scientific Backgrounds

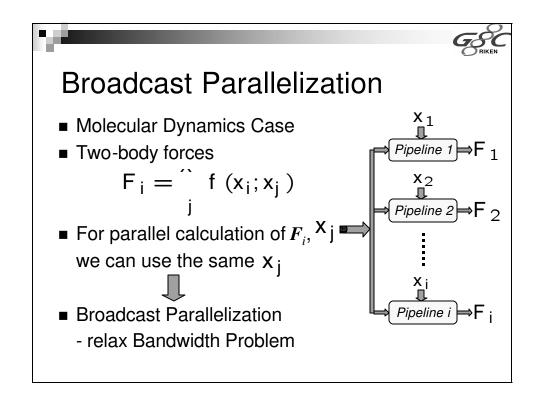
- Protein 3000 Project:
 National project to determine 3,000 protein structures
- Extensive requirements for molecular simulations
 - □ Drug Design
 - □ Bio-nanotechnology
- High-performance dedicated computer can solve computational difficulties

RIKEN NMR Park





What is GRAPE?


- GRAvity PipE
- Special-purpose computers for classical particle simulations
 - \square Astrophysical *N*-body simulations
 - ☐ Molecular Dynamics Simulations
- Accelerate only force calculations
- Univ. Tokyo / RIKEN
- MDGRAPE-3: Petaflops GRAPE for Molecular Dynamics simulations

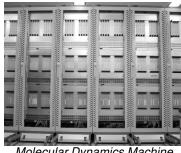
J. Makino & M. Taiji, *Scientific Simulations with Special-Purpose Computers*, John Wiley & Sons, 1997.

Number of floating-point operations / cycle of microprocessors ■ Parallelization within LSI is quite important Number of operations ops/cycle 0.1 / cycle is quite limited 0.01 in general-purpose computer 10-3 Mainly due to memory 1980 2000 1990 bandwidth Year J. Makino, Proc. Toyota Symposium, Elsevier (2001)

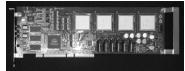
Highly-Parallel Operations in LSIs for MD simulations

- For special-purpose computers
 - ☐ Broadcast Memory Architecture
 - ☐ Efficient: 660 equivalent operations/cycle/chip in MDGRAPE-3 chip
 - □ possible to increase according to Moore's law
- In case of Molecular Dynamics:

MDGRAPE	600nm	1 pipeline	1Gflops
MDGRAPE-2	250nm	4 pipelines	16Gflops
MDGRAPE-3	130nm	20 pipelines	165Gflops


- Power Efficiency of Special-Purpose Computers
- General-Purpose Processors Pentium 4 (130nm, 3GHz, FSB800) ... 82W 14W/Gflops
- Molecular Dynamics Processors

MDGRAPE-2 (250nm, +2.5V, 100MHz) ... 1W/Gflops MDGRAPE-3 (130nm, +1.2V, 250MHz) ... 0.1W/Gflops

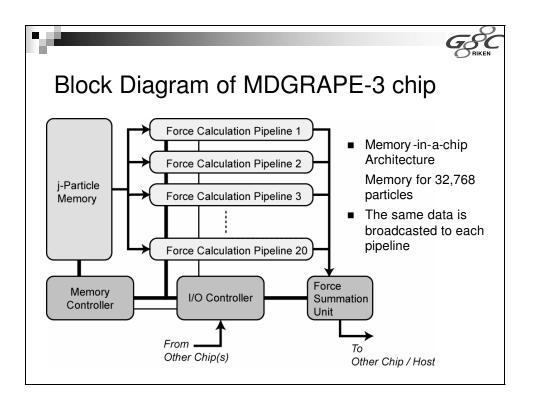

- ☐ Highly-parallel operation at modest frequency
- □ Control precision make power-performance better.

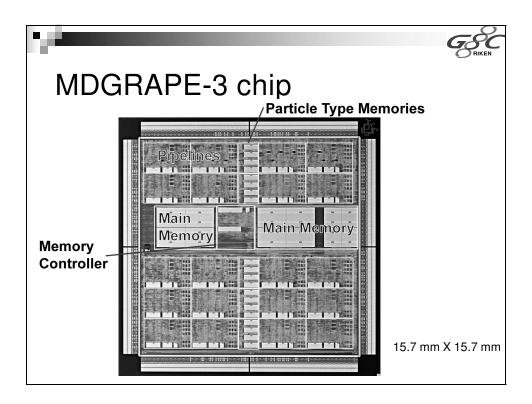
- MDGRAPE-2 chip: 16 Gflops at 100 MHz IBM SA-12E 250nm
- 78 Tflops Performance
- Fastest Computer since 2000
- Small system (MDGRAPE-2) is commercially available

Molecular Dynamics Machine

MDGRAPE-2

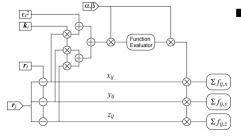
T. Narumi et al., Molecular Simulation 21, 401 (1999).


MDGRAPE-3 (aka Protein Explorer)


- Petaflops special-purpose computer for molecular dynamics simulations
- Whole system : FY2006
- MDGRAPE-3 chip

- Force calculation chip
- 130 nm technology Hitachi HDL4N
- 165 Gflops/chip at 250 MHz Sample: 230Gflops@350MHz

M. Taiji et al, Proc. Supercomputing 2003, on CDROM.



Force Pipeline

Calculate two-body central forces

$$r_{ij} = r_{i} \mid r_{j}$$
 $r_{ij}^{2} = r_{ij}^{2} + r_{i}^{2}$
 $F_{i} = r_{ij} g(\Re \frac{2}{ij})$

- 8 multipliers, 9 adders, and 1 function evaluator
 = 33 equivalent operations for Coulomb force calculation
 A. H. Karp, *Scientific Programming*, 1, pp133–141 (1992)
- Function Evaluator: approximate arbitrary functions by segmented fourth-order polynomials
- Multipliers : floating-point, single precision
- · Adders: floating-point, single precision / fixed-point 40 or 80 bit

Chip Details

- Hitachi HDL4N 130nm Vcore = +1.2V, 7-layer Cu wiring, pitch=360nm
- I/O GTL and/or +1.2V CMOS

203 signals (not including test)

■ Clock Frequency Core: 250 MHz, I/O: 125 MHz

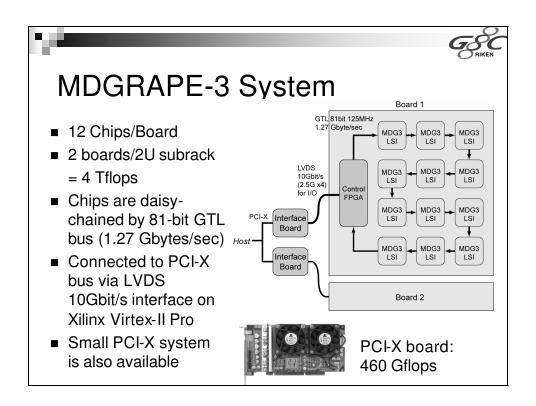
in worst case commercial

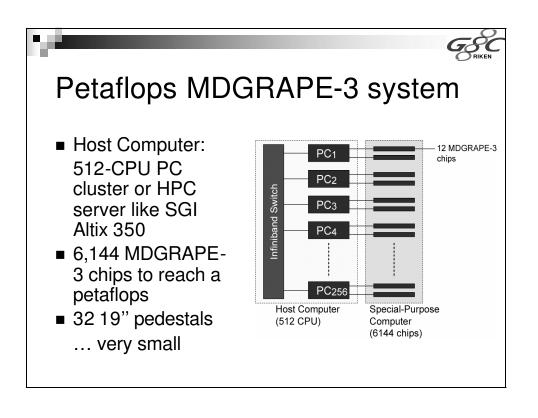
- Die Size 15.7mm X 15.7 mm
- Total Gates 6.1M (2NAND)

~20% for test and clock tree

- Total Memories 9M bitsUsage 53%
- Package
 Power Consumption
 1444 pin FCBGA
 19 W at 350 MHz

Performance


- In total
 - □ 160 floating-point multipliers
 - □ 60 floating-point adders
 - □ 60 40-bit integer adders + floating point converters
 - ☐ 60 floating-point to 80-bit integer converters + integer adders
 - □ 20 function evaluators
 - Table + fourth order polynomial calculation
- all units work simultaneously
- ~660 operations/cycle for Coulomb force
- 165 Gflops at 250 MHz
- Sample LSI worked at 350MHz, 230 Gflops



Design Method

- Synopsis Design Compiler Ultra + in-house multiplier/multiplier-adder generator to use special cells
- VHDL 11,000 lines
 - except for multipliers, test bench, and comment/blank lines
- Simple : all vhdl, synthesis, simulations has been performed by the presenter alone
 - ~8 man-month
- Test Circuits, Clock Tree, Layout : Hitachi
 - ~18 man-month
- Development period : ~1 year
- 2 scientists work for system design and software

Price & Power Performance

	\$ / Gflops	W / Gflops
MDGRAPE-3	15	0.2
BlueGene/L	140	6
Pentium 4 PC	400	14
Earth Simulator	8000	128
MDGRAPE-2	150	1.5

Total development cost ... about 15 M\$ including our salaries

Applications suitable for broadcast memory architecture

- Computation-intensive (not data-intensive)
- Multiple calculations using the same data
 - □ Molecular dynamics simulations
 - □ Astrophysical *N*-body simulations
 - □ Dynamic programming for genome sequence analysis
 - □ Boundary value problems
 - □ Calculation of dense matrices

Quasi-general-purpose machines with broadcast memory architecture

■ (F)PU array
GRAPE-DR Project (2004-2008)
Prof. Jun Makino, Univ. Tokyo
1 Tflops/chip

SIMD vector processor with broadcast memory architecture

MACE (MAtrix Computing Engine) for dense matirix calculation 3.5Gflops/chip, double precision, 180nm

 Such approach will be effective in future when our approach will become more advantageous

Acknowledgements

- Coworkers
 - □ Hardware developments
 Tetsu Narumi, Ph. D.
 Yousuke Ohno. Ph. D.
 - Applications
 Atsushi Suenaga, Ph.D.
 Noriyuki Futatsugi, Ph.D.
 Noriaki Okimoto, Ph.D.
 Naoki Takada. Ph.D.
 - □ Bioinformatics Group Director Akihiko Konagaya, Dr.Eng.

GRAPE collaboration

Univ. Tokyo

Prof. Junichiro Makino

Dr. Toshiyuki Fukushige

RIKEN

Dr. Toshikazu Ebisuzaki

Dr. Takahiro Koishi

Dr. Ryutaro Susukita

Saitama Inst. Tech.

Dr. Atsushi Kawai

Univ. Air

Prof. Daiichiro Sugimoto

This work is partially supported by `Protein 3000 project', Ministry of Education, Culture, Sports, Science and Technology