

Image Synthesis a sampling problem

- Scene described by triangles of materials simulated by
 - sampled images textures
 - Inumerically approximated properties
- Vertex processing independent vertex work screen position & attributes calculation
- Assemble and sample triangles
 generate pixels
- Pixel processing independent pixel work texture sampling, color calculation, visibility, and blending

Fiat Lux – Paul Debevec et al.

10

SIGGRAPH '99 Electronic Theatre

- High Dynamic Range rendering much greater precision
- HDR rendering at work: Light through windows is 100s of times brighter than obelisks, but obelisks aren't solid black. Glow produces a more cinematic image.

Light Transport

Inputs: geometry, texture maps, light positions, light radiances, etc. 12

Outputs: HDR per-pixel radiance

- This value can be anything 1.0x10⁻⁶ or 9.5x10¹⁰
 - Depends on whether scene is a candle-lit cave
 - …or a picnic on the sun.
 - Iloating point is critical
- Algorithm:
 - Determine which surfaces are visible
 - Compute light reflected (or transmitted) to viewer
 - Based on physics

Programmer's Model new features of GF6800

Oual data type

○IEEE FP32 precision & IEEE-like FP16

Oynamic pixel branching

Vertex texture

Floating Point framebuffer blending

Microsoft's Direct3D

○VS/PS shader model 3.0

Ianguages

HLSL and Cg compiled to GPU-independent assembly

○ JIT compilation to GPU-specific target

- Maps from pixel-linear address to page & partition tiling
- Flexible in:
 - Width, Depth, Frequency, Banks

Pixel Program

Program computes resulting color

- 32-bit Floating point math
- Texture lookups
- inputs
 - generic attributes (formerly texture coordinates)
 - colors, Z, fog
- outputs
 - Multiple Render Targets
- General purpose processor
 - very similar to Vertex Engine
 - constants
 - temporary registers
 - Interpreter Strang

Complex, data-dependent shading

26

				31
_				
l Fxan	nnie Snad	er Code		
def c1 2 000000 -1 000000 0 000000 0 000000		# clock 3	#	
del t0.rg		rcp ru.a, ru.a	# reciprocal in shader 0	
del t1			# dual issue in shader 0	
del t4 rab		toyld r2 r0 e1	# toxture fetch	
dcl v0		mad r2.rgb, r0.a, r2, c5	# mad in shader 1	
dcl 2d s0		abs r0.a. r0.a	# abs in shader 1	
dcl_2d s1		log r0.a, r0.a	# log in shader 1	
dcl_cube s2		0	C C	
dcl_2d s3		# clock 4		
		rcp r0.a, t1.a	# reciprocal in shader 0	
# clock 1		mul r0.rg, t1, r0.a	# div instruction in shader 0	
texId r0, t0, s0;	# tex fetch	mul r0.a, r0.a, c2.g	# dual issue in shader 0	
madr r0, r0, c1.r, c1.g	#_bx2 in tex	texld r1, r0, s3	# tex fetch	
nrm_pp r1.rgb, t4	# nrm in shader 0	mad r1.rgb, r1, c4, -r2	# mad in shader 1	
dp3 r1.r, r1, r0	# 3D dot product in shader 1	exp r0.a, r0.a	# dual issue in shader 1	
mui r0.a, r0, r0	# dual issue in shader 1			
# alaak 2		# clock 5	# A	
# CIUCK 2 mul r1 a r0 a c2 a	# dual issue in shader 0	texid ru, ri.bar, s2	# texture coordinates swizzle	
mul r0 rgb r1 r r0	# dual issue in shader 0	mul r0 a r1 v0	# dual issue in shader 1	
add r0.a. r1.r. r1.r	# fx2 in shader 0	mar 10.a, 11, VO		
mad r0.rg, r0.a, c1, c1.a # mad w/2 const in shader 1		# clock 6		
mul r1.ba, r1.a, r0.a, c2 # dual issue in shader 1		mul r1.rgb, r0.a, c5.a	# mul in shader 0	
		mad r0.rgb, r1, r0.a, r0	# mad in shader 1	
		mov r0.a. c3.a	# move in shader 1	
		mov oC0, r0	# move in shader 1	

General-Purpose Computing

38

Applications

- NVIDIA Gelato Renderer
- Protein folding
- Black-Scholes
- Image processing
- Oual data types: FP32 & FP16
- Streaming Programming Languages
 - Brook (Stanford)
- www.gpgpu.org

Chip Statistics

222 M transistors

- **○600 M vertices/sec**
- 0.13u IBM process 8LM
- Q 400+ MHz pipe clock
- **○303 mm^2**

