
1

John Montrym

Henry Moreton

1

GPU Target Applications
(Graphics Processing Unit)

Interactive Gaming (50M units, 10M gamers)

Cinematic quality rendering in real time .

Digital Content Creation (DCC) (1M prof, 50M home)

Motion Picture and Gaming Industries

Computer Aided Design & Manufacturing (1M)

Visual Simulations (100K units)

Pilot / Driver Training

General Computing (a few K sites, 1000s per site)

Emerging Area of Research

Consumer
handheld(50M), consoles(100M),
media centers(5M/y), cell phones (600M/y)

2

2

Image Quality Evolution

Marooned, 1990

2D gaming

CPU painted pixels BLTs
performed by VGA

3

... First 3D ...

HoverTank3D, 1991

1st 3D PC game

Flat Shading

3

4

... Doom Series ...

Final Doom Doom II

Ultimate Doom

Rudimentary Texturing

5

... Quake Series ...

Quake

Quake II

Quake III

Multi-texture &
Color Combiners

4

6

... Doom III, 2004 ...

Universal lighting & shadows
Anisotropic & Antialiasing

“always on”

7

Image Synthesis -
a sampling problem

Scene described by triangles of materials
simulated by

sampled images – textures

numerically approximated properties

Vertex processing – independent vertex work
screen position & attributes calculation

Assemble and sample triangles
generate pixels

Pixel processing – independent pixel work
texture sampling, color calculation,

visibility, and blending

5

8

Describing a
scene and materials

9

Simple combinations – 2 examples
typically much more complex

reflective traces diamond plate

6

10

Fiat Lux – Paul Debevec et al.
SIGGRAPH ’99 Electronic Theatre

High Dynamic Range rendering - much greater precision

HDR rendering at work: Light through windows is 100s of times

brighter than obelisks, but obelisks aren’t solid black. Glow

produces a more cinematic image.

11

Typical Rendering Phases

Pre-render:

Shadow maps or shadow volumes for each

light source

Environment maps

Render scene from observer’s viewpoint

Accumulate contribution from each light

source

Post-render:

Tone-map, flare, depth-of-field

7

12

Light Transport

Inputs: geometry, texture maps, light positions,
light radiances, etc.

Outputs: HDR per-pixel radiance

This value can be anything – 1.0x10-6 or 9.5x1010

Depends on whether scene is a candle-lit cave

…or a picnic on the sun.

floating point is critical

Algorithm:

Determine which surfaces are visible

Compute light reflected (or transmitted) to viewer

Based on physics

13

Light Transport & Color Images

Light and color are fundamentally different

Light Transport: Physics (rendering)

Color Images: Perception (image processing)

High-quality rendering requires handling both

Light Transport

Huge dynamic range, high precision requirements

Multiple lights are additive, objects can be transparent

Tone Mapping

Compresses dynamic range, but precise

Color & Gamma Correction of Images

Precision is required near black, but not white

8

14

Shadow Volumes Increase

Geometric Complexity

Visible geometry

Shadow volume

geometry
Dramatic chase scene with shadows

Image courtesy of Contraband Entertainment

15

Architectural Drivers

Programmability
Evolved from configurable logic

Enables developers’ added value

Parallelism
Independent streams of vertices and pixels

highly data parallel

Memory Characteristics

9

16

Programmer’s Model

Two separate shader programs

Vertex program;
executed independently on every vertex.

Pixel program;
executed independently on every pixel.

Streaming model

Inputs delivered to read-only registers

Outputs written to write -only registers

Fixed-size thread-private resources

Read/write temporary registers

Read-only textures

resampling & filtering hardware

Read-only constant tables

17

Programmer’s Model
new features of GF6800

Dual data type

IEEE FP32 precision & IEEE-like FP16

Dynamic pixel branching

Vertex texture

Floating Point framebuffer blending

Microsoft’s Direct3D

VS/PS shader model 3.0

languages

HLSL and Cg compiled to
GPU-independent assembly

JIT compilation to GPU-specific target

10

18

GPUs vs. CPUs

Workload offers more independent calculations

Enables wide and deep parallelism

Simple programming model:

Multi-threaded machine with single-threaded
programming model

Superscalar, up to 6 instructions

Combination of compute resources

programmable processors

fixed-function processors

rasterization

texture filtering

transcendental functions, inner product

19

Memory Characteristics

Affordable caches cannot support
long-term reuse

Effective streaming with local reuse

Supercomputer techniques

Latency hiding & vector operations

Page locality is important

2D&3D access is mapped to 1D DRAM page

Minimize read/write turns & page crossings

11

20

Framebuffer Controller

256-pin DDR-2 or GDDR-3

Schedules requests from all engines

Transparent compress/decompress

lossless bandwidth compression

Maps from pixel-linear address to

page & partition tiling

Flexible in:
Width, Depth, Frequency, Banks

21

Performance Regimes

No one typical performance mode

No single balance point

Seek to maximize usage of the most
expensive resource.

Dozens of regimes that each require

“speed of light”,
limited only by memory bandwidth

Z-only (no color) rendering

Shadow calculations

12

22

A Tour of the 6800

Triangle Setup

L2 Tex

Shader Instruction Dispatch

Fragment Crossbar

Memory

Partition

Memory

Partition

Memory

Partition

Memory

Partition

Z-Cull

23

Vertex Processing Engine

ISA compatibility – 2 generations

two instruction encodings

single merged 123-bit VLIW internal instruction

Six vector floating point processors

512 x 128 context RAM

32 x 128 temp regs

16 x128 input and output

512 instructions

Up to 3 threads per processor

hides latency from the programmer

13

24

Vertex Processing Engine

MIMD Architecture

VLIW issue issues to

vector and scalar units

Penalty free branching

Shader Model 3.0

Vertex Texture Fetch

VPE threads hide
latency

Non-stalling

Up to 4 textures

Mip-maps, no filtering

FP32

Vector
Unit

Primitive

Assembly

Input Vertex

Data

To Setup

FP32

Scalar
Unit

Viewport Processing

Branch

Unit

Vertex

Texture
Fetch

L2 Texture
Cache

Vertex Processor Detail

25Primitive Assembly, Cull
Setup & Rasterizer

Perspective divide

Viewport

Assemble primitives

Cull

Per-triangle parameter setup

Tile walking

Sample in/out test

Traversed in page

friendly order

Fixed function units

14

26

Pixel Program

Program computes resulting color

32-bit Floating point math

Texture lookups

inputs

generic attributes (formerly texture coordinates)

colors, Z, fog

outputs

Multiple Render Targets

General purpose processor

very similar to Vertex Engine

constants

temporary registers

branching...

27Complex,

data-dependent shading

15

28

Pixel Processor Detail

FP Texture
Processor

L1 Texture

Cache

Branch
Processor

FP32

Shader
Unit 1

FP32

Shader

Unit 2

Input Fragment

Data

Output
Shaded Fragments

Fog
ALU

Texture

Data

L2 Texture

Cache

SIMD Architecture

Dual Issue / Co-Issue

FP32 Computation

Shader Model 3.0

Shader Unit 1
4 FP Ops / pixel
Dual/Co-Issue

Texture Address Calc
Free fp16 normalize

+ mini ALU

Texture Filter
Bi / Tri / Aniso
1 texture @ full speed

4-tap filter @ full speed

16:1 Aniso w/ Trilinear (128-tap)
FP16 Texture Filtering

Shader Unit 2
4 FP Ops / pixel

Dual/Co-Issue
+ mini ALU

29

Pixel Shader Architecture

ShaderShader
Unit 1Unit 1

TextureTexture

ShaderShader
Unit 2Unit 2

4 Components

1 Op / component

4 ops/pixel

4 Components

1 Op / component

4 ops/pixel

1 Texture/pixel

@ full speed

8 Ops/pixel

and/or

16

30

Instruction Processing
Superscalar vs. Split vector

DX9 split vector

Two independent instructions

executing on the same shader
unit. (split 4-vector)

6800 can group components
as 3/1 or 2/2

2 instructions/pixel/cycle

GeForce 6800 Superscalar

up to 6 instructions executing in
the same cycle on different
shader units.

efficient instruction-level
parallelism

6 instructions/pixel/cycle

RR GG BB AA

Operation 1 Operation 2 RR GG BB AA

Operation 3 Operation 4

RR GG BB AA

Operation 1 Operation 2

Shader
Unit 1

Shader
Unit 2

31

Example Shader Code
ps_2_0

def c1, 2.000000, -1.000000, 0.000000, 0.000000

dcl t0.rg

dcl t1

dcl t4.rgb

dcl v0

dcl_2d s0

dcl_2d s1

dcl_cube s2

dcl_2d s3

clock 1

texld r0, t0, s0; # tex fetch

madr r0, r0, c1.r, c1.g # _bx2 in tex

nrm_pp r1.rgb, t4 # nrm in shader 0

dp3 r1.r, r1, r0 # 3D dot product in shader 1

mul r0.a, r0, r0 # dual issue in shader 1

clock 2

mul r1.a, r0.a, c2.a # dual issue in shader 0

mul r0.rgb, r1.r, r0 # dual issue in shader 0

add r0.a, r1.r, r1.r # fx2 in shader 0

mad r0.rg, r0.a, c1, c1.a # mad w/2 const in shader 1

mul r1.ba, r1.a, r0.a, c2 # dual issue in shader 1

clock 3

rcp r0.a, r0.a # reciprocal in shader 0

mul r0.rg r0, r0.a # div instruction in shader 0

mul r0.a, r0.a, r1.a # dual issue in shader 0

texld r2, r0, s1 # texture fetch

mad r2.rgb, r0.a, r2, c5 # mad in shader 1

abs r0.a, r0.a # abs in shader 1

log r0.a, r0.a # log in shader 1

clock 4

rcp r0.a, t1.a # reciprocal in shader 0

mul r0.rg, t1, r0.a # div instruction in shader 0

mul r0.a, r0.a, c2.g # dual issue in shader 0

texld r1, r0, s3 # tex fetch

mad r1.rgb, r1, c4, -r2 # mad in shader 1

exp r0.a, r0.a # dual issue in shader 1

clock 5

texld r0, r1.bar, s2 # texture coordinates swizzle

mad r0.rgb, r0, v0, r1 # color calculation in shader 1

mul r0.a, r1, v0 # dual issue in shader 1

clock 6

mul r1.rgb, r0.a, c5.a # mul in shader 0

mad r0.rgb, r1, r0.a, r0 # mad in shader 1

mov r0.a, c3.a # move in shader 1

mov oC0, r0 # move in shader 1

17

32

Texture

Deeply pipelined cache

Many hits and misses in flight

Explicit Compression

4:1 ratio

Lossy small-grained fixed ratio schemes

Filtering

Bilinear, tri-linear, up to 16:1 anisotropic

4xFP16 texels

Non-power-of-2 image addressing

33

Variable sampling density

18

34

Anisotropic Footprint
an ellipse

35

Pixel Engines

16 pixels per clock Color & Z

32 pixels per clock Z-only

FP16 x 4 Frame Buffer Blending & Display

Lossless Color & Z-Compression

High Quality Antialiasing (filtering) - Rotated Grid

Accelerated Shadow Rendering

19

36

Pixel Pipeline Detail

Pixel X-Bar Interconnect

Multisample AA

Z Comp

Z ROP

C Comp

C ROP

Fragment Data

From Pixel Shader

Frame Buffer

Partition

Memory

FP16 Floating Point Blending

Double-speed Z

Lossless Color & Z

Compression

Multiple Render Targets

37

Anti-aliasing

Transparent to the application

Smooth silhouette and
inter-penetration edges

Constant color fragments

Coverage & depth information per sample

Multisampling: one color per pixel

Super-sampling: one color per sample

2, 4 or 8 sub-samples per pixel

Variety of reconstruction filters available

20

38

General-Purpose Computing

Applications
NVIDIA Gelato Renderer

Protein folding

Black-Scholes

Image processing

Dual data types: FP32 & FP16

Streaming Programming Languages

Brook (Stanford)

www.gpgpu.org

39

Future Directions

Continue to generalize the programming

models

Virtualization
Virtual memory

Eliminate fixed limits on intermediate storage

21

40

Chip Statistics

222 M transistors

600 M vertices/sec

0.13u IBM process 8LM

400+ MHz pipe clock

550 MHz DDR mem clock

303 mm^2

>120 GFLOPS peak

= 6x a 5GHz Pentium 4

41

Summary

Interactive Rendering has reached
Cinematic Quality

The GeForce 6800, built for advanced

graphics applications incorporates:

A flexible, commodity-to-exotic memory

system

Rich-featured programmable engines
architected for streaming memory

Considerable special purpose hardware

