<

7ZVIDIA.

John Montrym
Henry Moreton

GPU Target Applications

(Graphics Processing Unit)

< Interactive Gaming (50m units, 10M gamers)
< Cinematic quality rendering in real time.

< Digital Content Creation (DCC) (1M prof, 50M home)
< Motion Picture and Gaming Industries

< Computer Aided Design & Manufacturing (1m)

< Visual Simulations (100K units)
< Pilot / Driver Training

<~ General Computing (a few K sites, 1000s per site)
<~ Emerging Area of Research

- Consumer

< handheld(50M), consoles(100M),
media centers(5M/y), cell phones (600M/y)

Image Quality Evolution

Marooned, 1990
2D gaming

4 | CPU painted pixels BLTs
= performed by VGA

... First 3D ...

HoverTank3D, 1991
1st 3D PC game

Flat Shading

... Doom Series ...

... Quake Series ...

Multi-texture &
Color Combiners

... Doom I, 2004 ...

Universal lighting & shadows
Anisotropic & Antialiasing
“always on”

Image Synthesis -
a sampling problem

<~ Scene described by triangles of materials
simulated by
< sampled images - textures
< numerically approximated properties

< Vertex processing — independent vertex work
<~ screen position & attributes calculation

<~ Assemble and sample triangles
<~ generate pixels

< Pixel processing — independent pixel work
< texture sampling, color calculation,
visibility, and blending

Describing a
scene and materials

di
lighting

Simple combinations — 2 examples
typically much more complex

reflective traces diamond plate gyipia.

Fiat Lux — Paul Debevec et al.

SIGGRAPH ’99 Electronic Theatre

< High Dynamic Range rendering - much greater precision

< HDR rendering at work: Light through windows is 100s of times
brighter than obelisks, but obelisks aren’t solid black. Glow
produces a more cinematic image.

Typical Rendering Phases

< Pre-render:
< Shadow maps or shadow volumes for each
light source

< Environment maps
< Render scene from observer’s viewpoint
< Accumulate contribution from each light
source
<~ Post-render:
< Tone-map, flare, depth-of-field

Light Transport

< Inputs: geometry, texture maps, light positions,
light radiances, etc.
< Outputs: HDR per-pixel radiance
< This value can be anything — 1.0x106 or 9.5x10'°
< Depends on whether scene is a candle-lit cave
< ...or a picnic on the sun.
< floating point is critical
< Algorithm:
- Determine which surfaces are visible
<~ Compute light reflected (or transmitted) to viewer
- Based on physics

Light Transport & Color Images

< Light and color are fundamentally different
< Light Transport: Physics (rendering)
< Color Images: Perception (image processing)
< High-quality rendering requires handling both
< Light Transport
< Huge dynamic range, high precision requirements
< Multiple lights are additive, objects can be transparent
< Tone Mapping
<~ Compresses dynamic range, but precise
< Color & Gamma Correction of Images
< Precision is required near black, but not white

Shadow Volumes Increase h

Geometric Complexity

I
/

Dramatic chase scene with shadows

Visible geometry

A WA Lirer
\\\ ‘ ”*Jé

:'|‘

\}

i &i

B

Shadow ;/olume
geometry

Image courtesy of Contraband Entertainment

Architectural Drivers

< Programmability

< Evolved from configurable logic
<Enables developers’ added value

< Parallelism

<Independent streams of vertices and pixels

~highly data parallel

<Memory Characteristics

Programmer’s Model

-~ Two separate shader programs
< Vertex program;

executed independently on every vertex.

< Pixel program;
executed independently on every pixel.
< Streaming model
< Inputs delivered to read-only registers
< Outputs written to write -only registers
< Fixed-size thread-private resources
< Read/write temporary registers

- Read-only textures
< resampling & filtering hardware

< Read-only constant tables

Programmer’s Model
new features of GF6800

< Dual data type
<~ |IEEE FP32 precision & IEEE-like FP16
-~ Dynamic pixel branching
< Vertex texture
< Floating Point framebuffer blending
< Microsoft’s Direct3D
< VS/PS shader model 3.0
< languages

<HLSL and Cg compiled to
GPU-independent assembly

<JIT compilation to GPU-specific target

GPUs vs. CPUs

-~ Workload offers more independent calculations
< Enables wide and deep parallelism
< Simple programming model:

< Multi-threaded machine with single-threaded
programming model

<~ Superscalar, up to 6 instructions
-~ Combination of compute resources
<~ programmable processors
< fixed-function processors
< rasterization
< texture filtering
< transcendental functions, inner product

Memory Characteristics

< Affordable caches cannot support
long-term reuse

< Effective streaming with local reuse

<~ Supercomputer techniques
< Latency hiding & vector operations

<~ Page locality is important
- 2D&3D access is mapped to 1D DRAM page
< Minimize read/write turns & page crossings

10

Framebuffer Controller

- 256-pin DDR-2 or GDDR-3
<~ Schedules requests from all engines
< Transparent compress/decompress
- lossless bandwidth compression
<~ Maps from pixel-linear address to
page & partition tiling
< Flexible in:
< Width, Depth, Frequency, Banks

20

Performance Regimes

<~ No one typical performance mode
< No single balance point

- Seek to maximize usage of the most
expensive resource.

-~ Dozens of regimes that each require
“speed of light”,
limited only by memory bandwidth
<~ Z-only (no color) rendering
-~ Shadow calculations

21

11

22

A Tour of the 6800

g NN _|__1 a1 _|__1 a1 __|_1
[[7
L7
Triangle Setup
v
Shader InstrucI:tion Dispatch
vV vV vV VvV VvV v vV VvV ¥ vV VvV vV v Vv v
_I_i__ _I_i_l_i__ _I_i_l_i__ _I_i_l_i__ ___I_i_l_i__ _I_i
12 88 288 2385 239 5 5 S s Sem
| | I+ | | [T 1 |
Fragment Crossbar
v v v v v v v VIV v v v v v v v
1 i il el il el N el il il el el el e
(0]] e e B i e e e e e e e e i R

Memory Memory Memory Memory
Partition Partition Partition Partition

23

Vertex Processing Engine

< ISA compatibility — 2 generations

<two instruction encodings

< single merged 123-bit VLIW internal instruction
< Six vector floating point processors

<512 x 128 context RAM

<32 x 128 temp regs

<16 x128 input and output

<512 instructions
< Up to 3 threads per processor

< hides latency from the programmer

12

24

Vertex Processor Detail

Input Vertex
Data

- Vertex Processing Engine
l il l MIMD Architecture
Veriox - o VLIW issue issues tq
T Scalar Vs vector and scalar units
Feteh ont ont Penalty free branching
v ! v Shader Model 3.0
Brar:::h
Unit }_ Vertex Texture Fetch
e ¥ VPE threads hide
Cache Assembly | latency
Non-stalling
Viewport Processing | Up to 4 textures
l Mip-maps, no filtering
To Setup
Primitive Assembly, Cull =

Setup & Rasterizer

Fixed function units
Perspective divide

(

(

Viewport

(

< Cull

(

Assemble primitives

Per-triangle parameter setup

\

i

N
NN
S
R

! l\l’\ i

N 1\;\;\1

\‘
Y
L

4

4

< Tile walking
< Sample in/out test

< Traversed in page
friendly order

AN
e
N
\
N
N
AN

N
N

13

26

Pixel Program

< Program computes resulting color
< 32-bit Floating point math
< Texture lookups
< inputs
< generic attributes (formerly texture coordinates)
< colors, Z, fog
< outputs
< Multiple Render Targets
< General purpose processor
< very similar to Vertex Engine
< constants
< temporary registers
< branching...

Complex, g
data-dependent shading

\ i
h
\ L
) {
\
\
\

Pixel Processor Detail

Texture Filter

Bi/ Tri/ Aniso

1 texture @ full speed

4-tap filter @ full speed

16:1 Aniso w/ Trilinear (128-tap)
FP16 Texture Filtering

L2 Texture
Cache

SIMD Architecture
Dual Issue / Co-Issue
FP32 Computation
Shader Model 3.0

Texture Input Fragment
Data Data

FP32
<4—» Shader <
Unit 1

I FP32
L1 Texture Shader

Gache Unit2

v

Branch
Processor

v

Fog
ALU

v
Output
Shaded Fragments

FP Texture
Processor

28

Shader Unit 1

4 FP Ops / pixel
Dual/Co-Issue
Texture Address Calc
Free fp16 normalize
+mini ALU

Shader Unit 2
4 FP Ops / pixel
Dual/Co-Issue
+mini ALU

Pixel Shader Architecture

fm———— - i ppe——
: Shader E
I -
: ili : 4 Components
: . ''| | 1.0p/component | and/or
: Texture 1| |4 ops/pixel
S S :

Shader 4 Components

Unit 2 1 Op / component
| 4 ops/pixel
8 Ops/pixel

29

1 Texture/pixel
@ full speed

15

Instruction Processing
Superscalar vs. Split vector

REB A
N e

Operation 1 Operation 2

DX9 split vector

<~ Two independent instructions
executing on the same shader
unit. (split 4-vector)

< 6800 can group components
as 3/1 or 2/2

< 2 instructions/pixel/cycle

Shader
Unit 1

Operation 1 Operation 2

v
Shader ! :
Unit2 ! R a SN A !
1 1

i A&
Operation 3 Operation 4

30

GeForce 6800 Superscalar

up to 6 instructions executing in
the same cycle on different
shader units.

efficient instruction-level
parallelism

6 instructions/pixel/cycle

Example Shader Code

ps_2.0

def ¢1, 2.000000, -1.000000, 0.000000, 0.000000
dcl t0.rg

del t1

dcl t4.rgb

dclv0

dcl_2d s0

dcl_2d s1

dcl_cube s2

dcl_2d s3

#clock 1

tex|d r0, t0, sO; # tex fetch

madr r0, r0, c1.r,c1.g # _bx2in tex

nrm_pp ri.rgb, t4 # nrm in shader 0
dp3ri.r,ri,r0 # 3D dot product in shader 1
mul r0.a, r0, r0 # dual issue in shader 1

clock 2

mul r1.a, r0.a, c2.a # dual issue in shader 0
mul r0.rgb, r1.r, r0 # dual issue in shader 0
add r0.a, ri.r, ri.r # x2 in shader 0

mad r0.rg, r0.a, c1, c1.a # mad w/2 const in shader 1

mul r1.ba, r1.a, r0.a, c2 # dual issue in shader 1

clock 3

rcp r0.a,r0.a

mul r0.rg r0, r0.a
mul r0.a, r0.a, rl.a
texid r2, r0, s1

reciprocal in shader 0

div instruction in shader 0
dual issue in shader 0

texture fetch

mad r2.rgb, r0.a, r2, c5 # mad in shader 1

absr0.a, r0.a # abs in shader 1

log r0.a, r0.a # log in shader 1
#clock 4

rcpr0.a, t1.a # reciprocal in shader 0

mul r0.rg, t1, r0.a
mul r0.a, r0.a, c2.g
texld r1, r0, s3

div instruction in shader 0
dual issue in shader 0
tex fetch

mad ri.rgb, r1,c4,-r2 # mad in shader 1

exp r0.a, r0.a

dual issue in shader 1

#clock 5

texld r0, r1.bar, s2

texture coordinates swizzle

mad r0.rgb, r0, vO0, r1 # color calculation in shader 1

mul r0.a, r1, vO

dual issue in shader 1

clock 6
mul r1.rgb, r0.a, c5.a # mul in shader 0
mad r0.rgb, r1,r0.a, r0 # mad in shader 1

mov r0.a, c3.a
mov oCO0, r0

move in shader 1
move in shader 1

31

16

Texture

< Deeply pipelined cache
< Many hits and misses in flight
< Explicit Compression
<4:1 ratio
<~ Lossy small-grained fixed ratio schemes
< Filtering
< Bilinear, tri-linear, up to 16:1 anisotropic
< 4xFP16 texels
< Non-power-of-2 image addressing

32

Variable sampling density

screen

screen

33

pixel centers

<

#VIDIA.

17

34

Anisotropic Footprint

an ellipse
e circles in screen space
o map to ellipses in

texture space

J] ,‘.“

- ' -

e\ [T
3 : :

=z .nydv&?, ; 3

LB
% "+

texture <

BVIDIA.

35

Pixel Engines

» 16 pixels per clock Color & Z

) 32 pixels per clock Z-only

> FP16 x 4 Frame Buffer Blending & Display

’ Lossless Color & Z-Compression

’ High Quality Antialiasing (filtering) - Rotated Grid
’ Accelerated Shadow Rendering

!

!

!

!

!

!

18

Pixel Pipeline Detail

Fragment Data
From Pixel Shader

36

Bl B (e < FP16 Floating Point Blending
v < Double-speed Z
Lossless Color & Z
Multisample AA Compression
Multiple Render Targets

Frame Buffer
Partition

Memory

Anti-aliasing

< Transparent to the application

<-Smooth silhouette and
inter-penetration edges

<~ Constant color fragments
~Coverage & depth information per sample
<~ Multisampling: one color per pixel
<~ Super-sampling: one color per sample
< 2,4 or 8 sub-samples per pixel
< Variety of reconstruction filters available

37

19

38

General-Purpose Computing

Applications
< NVIDIA Gelato Renderer
< Protein folding
< Black-Scholes
< Image processing
Dual data types: FP32 & FP16
Streaming Programming Languages
© Brook (Stanford)

www.gpgpu.org

f

f

{

39

Future Directions

< Continue to generalize the programming
models

< Virtualization

< Virtual memory
< Eliminate fixed limits on intermediate storage

20

Chip Statistics

<222 M transistors
-~ 600 M vertices/sec
< 0.13u IBM process 8LM
<~ 400+ MHz pipe clock
<550 MHz DDR mem clock
<303 mmA2
<>120 GFLOPS peak
<= 6x a 5GHz Pentium 4

40

Summary

< Interactive Rendering has reached
Cinematic Quality

-~ The GeForce 6800, built for advanced
graphics applications incorporates:

< A flexible, commodity-to-exotic memory
system

< Rich-featured programmable engines
architected for streaming memory

<~ Considerable special purpose hardware

41

21

