

one radio multiple networks

Single Chip CMOS Direction Conversion Transceivers for WWAN and WLAN

Tajinder (Taj) Manku

tmanku@sirific.com

CONFIDENTIA

www.sirific.com

Introduction

- I. Market Requirements
- II. Receiver Architectures
- III. Sirific's Virtual LO™
- IV. Transmitter Architectures
- V. Sirific's Transceiver Platform and Implementation

VI. Conclusion

CONFI DENTI A

DC Offset Issues in Direct Conversion Radios

- DC offsets are common problem for direct conversion architectures and result from 5 physical effects:
 - ▲ RF leakage
 - ▲ LO-RF leakage
 - IIP2 (second order distortion) → Very bad for CMOS because of bad switching characteristics
 - ▲ Thermal DC offset
 - ▲ 1/f noise → Limiting factor for Direct Conversion CMOS

CONFIDENTI A

www.sirific.com

DC Offset Issues in Direct Conversion Radios

▲ In order for IIP2 to be a "stable" measurement value, the following condition should hold:

(input referred second order harmonic) > (LO leakage level reference to the input)

LO leakage	IM2	IIP2
= -99dBm	= -60 dBm	"stable"
LO leakage = -66dBm	IM2 = -120 dBm	IIP2 "unstable"

CONFI DENTI AL

1/f Noise in CMOS Circuits for Direct Conversion

- ▲ More important in CMOS
- ▲ Limiting factor for GSM/GPRS/EDGE direct conversion CMOS
- ▲ No "potential" fixes in CMOS
 - 1/f noise is more significant in CMOS technology
 - 1/f noise arises at baseband due to the switching of transistors in the mixers

(Darabi & Abidi, IEEE SSC, vol. 35, p 15, 2000)

CONFIDENTIAL

www.sirific.com

LO Generation

- ▲ LO generation is the generation of signal(s) to down convert the RF signal without corrupting the data
- Some contributors of DC offset can be combated with LO generation

CONFI DENTI AL

- I. Market Requirements
- II. Receiver Architectures
- III. Sirific's Virtual LOTM

IV. Transmitter Architectures

V. Sirific's Transceiver Platform and Implementation

VI. Conclusion

CONFIDENTIAL

www.sirific.com

Virtual LO™ - Sirific's Solution for LO Generation

■ Sirific's Virtual LO[™] frequency planning technique eliminates the DC offset

CONFIDENTIAL

- I. Market Requirements
- II. Receiver Architectures
- III. Sirific's Virtual LO™

IV. Transmitter Architectures

V. Sirific's Transceiver Platform and Implementation

VI. Conclusion

CONFIDENTIA

Transmitter Architectures – Direct Modulation

▲ Advantages

- Simple architecture
- Wide –band
- Single LO

▲ Disadvantages

- ▲ Limited gain control
- ▲ Difficult to meet noise, linearity, carrier feedthrough, and quadrature accuracy (especially in GSM)

CONFIDENTIA

www.sirific.com

Direct Modulation vs. Polar Loop

Direct Modulation	Polar Loop
+ supports other more complex modulations (i.e. WCDMA) + no calibration or complex loops	+ Lower noise (no TX filtering) + Add on to past GSM solutions (i.e. translational loop)
 Higher noise output (may require TX filtering/switches –filters are about <\$0.20 in volume) 	- supports only some modulations - Requires calibration or complex loops that require power
 Requires Linear PA Carrier feed-thru/sideband requires consideration Lower PA efficiency (higher power) 	 May require isolators (significant size and >\$1.00 in volume) May require PA controller chip Higher PA efficiency (lower power)

Polar Loop vs. Direct Modulation System PAE for EDGE

- System PAE for a Polar Loop PA is limited by the LDO which is used for amplitude modulation
- No LDO is required for Direct Modulation, and so system PAE depends only on the linear PA

System PAE < 20% including LDO) at Pout = +28dBm for Polar Loop

System PAE ~ 25% at Pout = +28dBm for Direct Modulation

CONFIDENTI A

www.sirific.com

- I. Market Requirements
- II. Receiver Architectures
- III. Sirific's Virtual LOTM
- IV. Transmitter Architectures
- V. Sirific's Transceiver Platform and Implementation
 - VI. Conclusion

CONFI DENTI A

Rx total chain measurements

Receiver	850/900	1800/1900	WLAN
Noise Figure	2.8dB	3.0dB	3.5dB
LO Re-radiation	-133dBm	-103dBm	-108dBm
IQ Phase Error	< 1°	< 1°	< 1°
IQ Amplitude Error	< 0.5dB	< 0.5dB	< 0.5dB
Maximum Gain Range	95dB	95dB	80dB
IIP2 (min)	45dBm	54dBm	66dBm
ΔNF with -26dBm Blocker @ 3MHz	4dB	4dB	-
LNA Power	18mW	18mW	18mW
Mixer Power	41mW	41mW	41mW

CONFIDENTIAL

Gm-C Baseband Filter, VGA and DCOC

Baseband Filter	850/900	1800/1900	WLAN
3dB Bandwidth	204kHz	204kHz	7.3MHz
Rejection	64dB @ 600kHz	64dB @ 600kHz	62dB @ 25MHz
Baseband Filter Power (Max Gain)	20mW	20mW	54mW

NFI DENTI AL

Tx Chain Measurements

Transmitter	850/900	1800/1900	WLAN
Carrier Suppression	>40dB	>40dB	>40dB
Sideband Suppression	38dB	38dB	>35dB
PN@20MHz@maxP	-154dBc/Hz	-149dBc/Hz	•
Gain Range	41dB	41dB	40dB
Max output power	8dBm	8dBm	4dBm
Mixer Power	34mW	34mW	65mW
PPA Power	77mW	77mW	65mW

CONFI DENTI AL

Synthesizer Measured Performance

Synthesizer	GSM	WLAN
VCO Frequency Range	3.4GHz to 3.9GHz	4.5GHz to 5.0GHz
Resolution	200kHz	200kHz or 1MHz
Settling Time (to 100ppm)	185 µs	-
Phase Noise (at mixer port)	-90dBc/Hz @ 10kHz -140dBc/Hz @ 3MHz	-85dBc/Hz @ 100kHz -131dBc/Hz @ 3MHz
CP, Dividers, Loop Filter Power	36mW	36mW
VCO Power	11mW	11mW

FI DENTI AL www.

Die Photo & RF Reference Design

▲ Production chip is < 20mm2</p>

WCDMA and 802.11a Reserved Area

▲ RF Reference Design

CONFI DENTI A

www.sirific.com

- I. Market Requirements
- II. Receiver Architectures
- III. Sirific's Virtual LO™
- IV. Transmitter Architectures
- V. Sirific's Transceiver Platform and Implementation
 - VI. Conclusion

CONFI DENTI A

Summary

- ▲ Multi-band, Multi-standard applications are a market requirement
 - Network operators and handset OEM/ODMs require low -cost high performance multi-mode solutions
- The consumer demand for wireless data services is driving the EDGE, WCDMA and WLAN markets
- ▲ CMOS solutions provide high integration and low cost
 - ▲ Applying CMOS to narrow -band cellular standards presents many design challenges
- ▲ Direct Conversion is the receiver architecture of choice for multi-standard applications
 - Eliminating DC Offset is critical
- Direct Modulation is the transmitter architecture of choice for multi-standard applications
 - ▲ Reducing Carrier Feedthrough and improving Quadrature Accuracy
- ▲ Sirific's Virtual LO™ and Dynamic Spurious Control are methods used to design a multi-band, multi-band direct conversion CMOS transceiver

opyright Sirific Wireless Corporation 2002

ONFI DENTI AL