

Nonvolatile Memory – NAND Flash

NAND Flash memory cells

September 04

- Common gate, daisy- chained source to drain
- Floating gate holds charge as with NOR
- Read or write current passes through chain of devices
- Needs to operate on larger data chunks
- Typically 4F² cell size, but 1 extra device per 16, result is equivalent to 4.25F² cell size

10

Generic Nonvolatile Memory Comparison (Today)

	NOR Flash	NAND Flash
Applications	Code, data	Mass storage
Future applications	MLC: mass storage	Code and data
Density range	Up to 512Kb	Up to 4Gb
READ latency	60ns- 120ns	25µs
Max Read bandwidth	41 MB/s-112 MB/s (16b)	40 MB/s (16b bus)
Max Write bandwidth	0.25 MB/s	5 MB/s
Erase time	400ms (128KB blk)	2ms (128KB block)
Read device current	1.6x	1x
Write device current	3x	1x

Note that there is a wide variation among competing devices

September 04

14

Micron	Flash	Memory	Comparison
--------	-------	--------	------------

	NAND Flash	NOR (Q-Flash)
Characteristic	MT29F2G08/16A	MT28F128J3
Random Access Read	25µs (first byte) 50ns for remaining 2111	120ns
Sustained Read Speed	16 MB/s(x8) or	20.5 MB/s (x8) or
(sector basis)	32 MB/s (x16)	41 MB/s(x16)
Random Write Speed	300µs/2112 bytes	180µs/32 bytes
Sustained Write Speed (sector basis)	1.5MB/s	0.178MB/s
Erase block size	128KB	128KB
Erase time per block (typ)	2ms	750ms

?NOR Flash memory is ideal for direct code execution (boot code)
?NAND Flash memory is ideal for file storage (e.g. data or image files. If code is stored, it must be shadowed to RAM first, as in a PC).

15

September 04

QDR III and DDR III (continued)

> 18Mb - 288Mb densities

September 04

- > 9 bits, 18 bits, and 36 bits wide
- Other design details available from suppliers under NDA
 - My guesses: 4- cycle latency, VTT mid rail termination scheme like RLDRAM II, increased ratio of echo clocks to outputs, increased ratio of input clocks to inputs
 - For today's performance analysis, latency guess is irrelevant; multiple identical addresses can be in flight simultaneously

39

QDR Comparison							
Feature	QDR	QDRII	QDRIII				
Frequency	BL2: 166 MHz BL4: 200 MHz	BL2: 250 MHz BL4: 333 MHz	BL2, BL4: 250- 500 MHz				
Data Valid	1.4ns 166MHz	1.9ns @166MHz 0.98ns @ 333MHz					
Initial Latency	1.4 Cycles	1.6 Cycles	4?Cycles				
Clocks	No Echo CLKs	Echo CLKs	Echo CLKs				
Density	9/18/36Mb	18/36/72Mb+	36-144Mb+				
Power Supply	2.5V	1.8V	1.2V				

Density Widths Frequencies Packages							
Donony	4 8 16	133-183	54 TSOP				
64 Mb	., 0, 10	MHz					
	32		54 TOP				
	8	133-166	54 TSOP 60 FBGA				
128 Mb	16	MHz	54 TSOP				
	32	···· · ·	86 TSOP, 90 FBGA				
	4		54 TSOP, 60 FBGA				
256Mb	8	133-166	54 TSOP, 60 FBGA				
2 3 0 101 10	16	MHz	54 TSOP, 54 FBGA				
	32		86 TSOP, 90 FBGA				
	4		54 TSOP				
512 Mb	8	133-183	54 TSOP				
	16	MHz	54 TSOP				

Basic DDR SDRAM Commands

	CS#	RAS#	CAS#	WE#	ADDR	NOTES
DESELECT (NOP)	н	Х	Х	Х	Х	9
NO OPERATION (NOP)	L	Н	Н	Н	х	9
ACTIVE (Select bank and activate row)	L	L	Н	н	Bank/Row	3
READ (Select bank and column, and start READ burst)	L	Н	L	н	Bank/Col	4
WRITE (Select bank and column, and start WRITE burst)	L	Н	L	L	Bank/Col	4
3URST TERMINATE	L	Н	Н	L	х	8
RECHARGE (Deactivate row in bank or banks)	L	L	Н	L	Code	5
AUTO REFRESH or SELF REFRESH Enter self refresh mode)	L	L	L	н	х	6, 7
OAD MODE REGISTER	L	L	L	L	Op-Code	2
 BAO-BAT select either the mode register or the extended BAO = 1, BA1 = 0 select extended mode register; other cc code to be written to the selected mode register. BAO-BA1 provide bank address; aO-A7 provide column ac 	address, (wh	gister (BA0 ns of BA0-I nere <i>i</i> =9 fo	= 0, BA1 : BA1 are re r x16, <i>i</i> =9,	= 0 select served). <i>4</i> 11 for x8,	the mode reg A0-A12 provid and <i>i</i> =9,11,12	ister; e the op- tor x4)
 BAO-BA1 select either the mode register or the extended BAO = 1, BA1 = 0 select extended mode register; other cc code to be written to the selected mode register. BAO-BA1 provide bank address; AO-AI provide column ac A10 HIGH enables the auto precharge feature (non percharged A10 HIGH enables the auto precharge feature (non percharged A10 HIGH: all banks are precharged and BAO-BA1 are "D 5. This command is AUTO REFRESH if CKE is HIGH, SELF REF 7. Internal refresh counter controls row addressing; for wit except for CKE. 	address. address. Idress, (wh stent), and on't Care. RESH if Ck hin the Se	gister (BA0 ns of BA0-I nere <i>i</i> =9 fo d A10 LOW " (E is LOW. If Refresh	= 0, BA1 = BA1 are re r x16, <i>i</i> =9, / disables 1 mode all in	= 0 select served). A 11 for x8, the auto p nputs and	the mode reg and i=9,11,12 precharge fea	ister; e the op- ! for x4) ture. n't Care"

49

September 04

DDR: Read with Autoprecharge СК# СК ^tCH tis tCK. ^tCL CKE <u>V</u>ill V/// V ¥///// X///X NOP⁵ X///X READ^{2,5} X///X NOP⁵ X///X NOP⁵ X///X NOP⁵ X///X NOP⁵ X///X ACT X COMMAND⁴ NOP5 ACT tis tih x4: A0-A9, A11, A12 x8: A0-A9, A11 x16: A0-A9 In the second secon x8: A12 x16: A11, A12 K RA In the second secon 7////// A10 us ин ra X INC вао, ва 1 //////X Bank x X ank x X///// tRCD, tRAP⁶ INCOMP INCOMPO CL = 2tRP7 ^tRAS Image: Image: Image: book tenderstand ^tRC DM 7////// Case 1: ^tAC (MIN) and ^tDQSCK (MIN) DQSCK (MIN) tRPRE DQS tLZ(MIN) -+ $\langle \stackrel{\text{po}}{n} \rangle$ DQ1 tLZ (MIN) tAC (MIN) Micron September 04 50

DDR SD	RAM F	Perfo	orm	anc	e M	ode	I
Clock Frequency		200	MHz	166	MHz	133	MHz
Clock period	Т	5 ns, 7	.5 max	6 ns, 1	3 max	7.5 ns, 13 m	
Cas Latency	CL	3	3	2	.5	2	2
		ns	Т	ns	Т	ns	Т
ACT to same bk ACT	tRC	55	~11	60	~10	65	~ 9
ACT to R or W	tRCD	15	~3	15	3	20	~ 3
ACT to PRE	tRAS	40	~8	42	~7	40	~ 6
PRE Period	tRP	15	3	15	3	20	~ 3
W to PRE	tWR	15	3	15	3	15	2
W to R	tWTR		1		1		1
ACT to diff bk ACT	tRRD	10	2	12	2	15	2
Auto RFSH period	tRFC	70	~14	72	~12	75	~10
?7.8125µs refresh po ?Other CAS latencies ? Some calculations r ? 4 banks ?T represents 1 clocl ?Clock period sweet	eriod used (5 are possible equire CL roo c cycle spots: 5 ns, -	12Mb d but are unded u 6 ns, 7.5	evice) m't used p to nex 5 ns	d in peri	formanc er	e mode	I
? Recall the disclaime September 04	r!	58			6	Mic	ror

DDR SDRAM Performance Model

Command	To Same Bank	To Different Bank
W to R	1 + BL/2 + TWTR	BL/ 2
W to W	BL/ 2	BL/ 2
W to PRE	1 + BL/2 + TWR	1
W to ACT	Wto PRE + TRP	1
R to R	BL/ 2	BL/ 2
R to W	CL(rounded up) + BL/2	CL(rounded up) + BL/2
R to PRE	BL/ 2	1
R to ACT	BL/2 + TRP	1
ACT to ACT	TRC	TRRD
ACT to R or W	TRCD	1
ACT to PRE	TRAS	1

? Recall the disclaimer: do not base controller design on this information, consult manufacturer data sheets for latest and most accurate information

59

September 04

Feature/ Option	DDR	DDR2	DDR2 Advantage
Package	TSOP (66-pin)	FBGA only	Better electrical performance and speed
Voltage	2.5V 2.5V I/ O	1.8V 1.8V I/ O	Reduces memory system power deman
Densities	64Mb –1Gb	256Mb – 4Gb	High- density components enable large memory subsystems
Internal banks	4	4 and 8	1Gb and higher will have 8 banks for better performance
Pre-fetch (MIN write burst)	2	4	Provides reduced core speed dependency for better yields
Speed (data pin)	200, 266, 333, 400 Mb/s	400, 533, 667 Mb/s	Migration to higher speed I/ O
Read Latency (CAS latency)	CL 2, 2.5, 3 CLK	CL + AL CL = 3, 4, 5	Eliminating one half clock settings helps speed internal DRAM logic and improve yields
Additive Latency (Posted CAS)	N/ A	AL options 0,1,2,3,4	Mainly used in server applications to improve command bus efficiency

Feature Overview	
(Continued)	

Feature/ Option	DDR	DDR2	DDR2 Advantage
WRITE Latency Termination	1 clock Motherboard parallel to VTT	READ Latency - 1 DRAM on-die termination (ODT) optional on motherboard	Improves bus efficiencies ODT for both memory and controller improves signaling, and reduces system cost
Burst Lengths	2.4.8	4.8	
Data Strobes	Single ended	Differential or single ended	Improved system timing margin by reduced strobe crosstalk
Modules	184-pin unbuffered registered 200-pin SODIMM 172-pin MicroDIMM	240-pin unbuffered registered 200-pin SODIMM 244-pin MiniDIMM 214-pin MicroDIMM	Modules are the same length, with added pins

DDR- DDR2 Differences: Page Size

Page size is the minimum number of columns accessed with a single ACTIVATE command = # columns x bus width

Den	sity	DDR	DDR2
05 C M h	Page Size	1 KB	1 KB
23010	Banks	4	4
54000	Page Size	2KB	1 KB (x4, x8), 2 KB (x16)
512MD	Banks	4	4
1 Gb	Page Size	2KB	1 KB (x4, x8), 2 KB (x16)
100	Banks	4	8
2 G b	Page Size	-	1 KB (x4, x8), 2 KB (x16)
260	Banks	-	8
			2
September 04		65	Micro

 Latencies Only whole clock CAS latencies Blue indicates primary speed grades 							
	Speed Bin	DDR2-667		DDR2-533	DDR2-400		
		4 - 4 - 4	5-5-5	4-4-4	3-3-3	Units	
	Parameter	MIN	MIN	MIN	MIN		
	CAS Latency	4	5	4	3	҅ск	
		12	15	15	15	ns	
	^t RCD	12	15	15	15	ns	
	^t RP	12	15	15	15	ns	
 ? 3-3-3 terminology means: 3-cycle CL (CAS latency) 3-cycle 'RCD (ACTIVE to READ or WRITE delay, i.e. row time) 3-cycle ^tRP (precharge command period, i.e. row closing time) > DDR2- 800 will be 5-5-5, 12.5ns 							
September 04			7	1		M	icron [,]

		DD	0R2	Refr	esh			
	Density	256Mb	512Mb	1 Gb	2 Gb	4Gb	Units	
	Refresh count (x4x8, x16)	8K,8K	16K,8K	16K,8K	32K,16K	TBD		
	Refresh cycle	64	64	64	64	64	ms	
	Refresh interval	7.8	7.8	7.8	7.8	7.8	μs	
	^t RFC	75	105	127.5	197.5	TBD	ns	
)	External refresh DRAM is manag commands give	interval ing mor n	l is main e interna	tained a al row/ b	t 8K refre ank refre	esh pe sh tha	er 64ms an exterr	cycle nal
	■ ^t RFC time is	increase	ed for ea	ich dens	ity		0	
Septem	nber 04			76				cron

DDR2 SDRAM Performance Model

Clock Frequency		333	MHz	266	MHz	200	MHz
Clock period	Т	3 ns, 3	8 max	3.75 ns	, 8 max	5 ns, 8	8 max
Cas Latency	CL	į	5	4	1	3	3
		ns	Т	ns	Т	ns	Т
ACT to same bk ACT	tRC	54	18	55	15	55	11
ACT to R or W	tRCD	15	5	15	4	15	3
ACT to PRE	tRAS	39	13	40	11	40	8
PRE Period	tRP	15	5	15	4	15	3
W to PRE	tWR	15	5	15	4	15	3
W to R	tWTR	7.5	3	7.5	2	10	2
ACT to diff bk ACT	tRRD 1KB pg	7.5	3	7.5	2	7.5	2
ACT to diff bk ACT	tRRD 2 KB pg	10	4	10	3	10	2
Auto RFSH period	tRFC	105	35	105	28	105	21
Internal R to PRE	tRTP	7.5	3	7.5	2	7.5	2

?Refresh every 7.8125µs.

?Other CAS latencies are possible but not used in the performance model ?T represents 1 clock cycle, all values are shown for fast corner, must calculate ?Clock period sweet spots: 3 ns, 3.75 ns, 5 ns

79

Micron

? Recall the disclaimer!

DDR2	SDRAM Perform	nance Model
Command	To Same Bank	To Different Bank
W to R	(CL-1) + BL/2 + TWTR	BL/ 2
W to W	BL/ 2	BL/ 2
W to PRE	(CL-1) + BL/2 + TWR	1
W to ACT	Wto PRE + TRP	1
R to R	BL/ 2	BL/ 2
R to W	BL/2 + 2	BL/2 + 2
R to PRE	AL + BL/2 + TRTP - 2	1
R to ACT	R to PRE + TRP	1
ACT to ACT	TRC	TRRD
ACT to R or W	TRCD - AL	1
ACT to PRE	TRAS	1
? For optimal opera ? Write latency = re ? Auto precharge no ? Recall the disclain	tion AL = TRCD – 1. Read later ad latency – 1. BL = 4 or 8. ot used in current model. ner.	ncy = AL + CL.
September 04	80	AMICION

RLDRAM II Performance Model

Clock Frequency		533	MHz	400	MHz
Clock period	Т	1.87	75 ns	2.5	ö ns
ACT to same bk ACT	tRC	15	~8	20	~8
Auto RFSH period	= tRC	15	~8	20	~8

For lower frequencies, T RC = tRC / tCK Examples:

f	T RC	f	T RC
200	3	150	3
267	4	200	4
333	5	250	5
400	6	300	6
467	7	350	7
533	8	400	8

?488.28125ns periodic refresh = 3.90625µs period for each bank

? Minimum frequency = refresh rate = 2.048 MHz

?8 banks

? Recall the disclaimer!

93

Micron

RLDRAM Performance Model

Command	To Same Bank	To Different Bank
Common I/ O Devic	8	
R to R	TRC	BL/ 2
R to W	Max(BL/2, TRC)	BL/ 2
W to W	TRC	BL/ 2
W to R	Max (BL/2+1, TRC)	BL/2 + 1

? Write latency = read latency + 1

- ? BL = 2, 4 or 8- word burst length.
- ? 9, 18, 36b bus

September 04

- ? Note that 4 cycles are required to transfer BL8 data, hence some bus conflict limitations apply when ^tRC is very short.
- ? Notice for total bus turnaround 1 cycle is lost regardless of BL.

94

? Recall the disclaimer!

Micron

RLDRAM Performance Model

Command	To Same Bank	To Different Bank
Separate I/ O Device		
R to R	Max(BL/2, TRC)	BL/ 2
R to W	Max(BL/2, TRC)	1
W to W	Max(BL/2, TRC)	BL/2
W to R	Max (BL/ 2, TRC)	1

95

Micron

?Write latency = read latency + 1.
?BL = 2, 4 or 8 - word burst length.
?9, 18b buses (e.g. 18b D, 18b Q)

? Recall the disclaimer!

Compatible	with DDR-I SDR	RAM Target	on Networking Customer		
	Network	FCRAM-I	Network FCRAM-II		
lemory Density	256M /	512Mb	288 / 576Mb		
# of bank)	(4bank	/ 8bank)	(4bank / 8bank)		
/O Organization	х8,	x16	x9 ^{*1} , x18, x36		
Clock Frequency	200MHz	266MHz+	333MHz+		
Random Cycle time	25ns	22.5ns	20ns		
Data Strobe	Bi-directi	onal DQS	Uni-directional DS&QS		
Vdd	2.:	5V	2.5V		
VddQ	2.5V	1.8~1.5V	1.8V ~ 1.5V		
I/O Interface	SSTL-2	SSTL-1.8, HSTL	SSTL-1.8, HSTL		
Deskere	66pin TSOP-II [∘] 2		60ball mBGA(x18)		
Раскаде	60ball mBGA	60Dall MBGA	144ball mBGA(x36)		

	FCRAM II-	- Operatio	n
Ext. Ba	ank Refresh w	ith single ref	resh
counte	r set		
Refresh for Bank	#0 Any commands can acc	cept for Bank#1 to #7	fresh for Bank #1
CLKCOMMAN ROA LAL REFAREF Bank BA BA Address UA LA REFC=RC=8 DO Comman	4 5 6 7 8 9 10 11 12 RDA LAL RDA LAL RDA LAL RDA LAL RDA BA BA BA BA BA BA UA LA UA LA UA LA UA LA UA Cycle (20n\$) Chunk Minimiz nd Unit for one bank refresh(examp	2 13 14 15 16 17 18 19 20 A LAL ROA LAL LAL ROA LAL ROA LAL LAL ROA LAL LAL ROA LAL LAL	21 22 23 24 25 26 27 28
	Refresh Counter Set	Disturb Rate@BL4	Disturb Rate @BL8
FC2+(New)	1	1.024%(Best) or 0.512%*	0(Best)
September 04		101	Micron

Multi Bank Write(MBW) Performance and Features

Features

-Selectable by EMRS2 set command(A7, A6)

-Write cycle : Same data write to two banks(ignored BA2 address) -Read cycle : Bank Interleave for BA2=0/1

FCR-489, Apr.2004, TOSHIBA

→Multi Bank Write feature is best fit for higher read duty (~100% read) applications such as look up table memory.

Performance Comparison

	September 04		102	Micro
A	@Read	with MBW	80%	100%
2	Bus Efficiency	w/o MBW	40%	57%
1	tRC @CL4		5 CLK(CL+1)	7 CLK(CL+3)
7	Parameter		BL4	BL8
100				

M	ulti Bank	Write and	d	FC	R-489, Apr.2004, TOSHIBA
Ba	ank Inter	leave Rea	ad ope	ration	
					->
CMD WRA LAL	WRA LAL	RDA LAL RDA LAL RD	A LAL RDA LAL	RDA LAL RDA LAL	RDA LAL RDA LAL
Bank BA0,1	BA0,1	BAO BAO,1 BA	0 BA0,1	BA0 BA0,1	BA0 BA0,1
Address UA1 LA1	UA2 LA2	UA1 LA1 UA2 LA2 UA	1 LA1 UA2 LA2	UA1 LA1 UA2 LA2	UA1 LA1 UA2 LA2
	Write Data #0 & #1 (UA1,LA1)	Write Data #0 & #1 (UA2,LA2)	Read Data Read Data #0 #1 UA1,LA1)(UA2,LA2)	Read Data Read Data #0 #1 (UA1,LA1)(UA2,LA2)	Read Data Read Data #0 #1 (UA1,LA1)(UA2,LA2)
Read Operation with	Multi Bank Write @B	L8			
tRC(CL+3)				→ ←	→ →
CMD WRA LAL	WRA LAL	RDA LA	L RDA LAL	RDA LAL	RDA LAL
Bank BA0,1	BA0,1	BAO	BA0,1	BAD	BA0,1
Address UA1 LA1	UA2 LA2	UA1 LA	1 UA2 LA2	UA1 LA1	UA2 LA2
WL3		CL4			
	Write Data #0 & #1 (UA1,LA1)	(2) Write Data #0 & #1 (UA2,EA2)		(1) Read Data #0 (UA1,LA1)	(2) (1) Read Data Read Data #1 #0 UA2_LA2) (UA1,LA1)
					Ricrop
September 04		103		4	

Note) This information is subject to change without notice. mBGA is lidless(bare chip) BGA. Image: Sect Sect Sect Sect Sect Sect Sect Sect		Network	FCR	RA	Μ	R	0	ac	In	າa	р		r	-UK-48	9, Apr.	2004, 1	USHIE
Package (pn/ball ptch) Density (I/O) CY2003 CY2004 CY2005 CY2006 CY2007 10 20 30 40 10 20 30 40 11 21 11 21 11 21 12 23 30 40 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 14 21 21 14 21	\=ES 🖉	Note) This information is CS = CS = MP Under	subject to chan study "D	nge wit Die Re	thout r ev.",	notice. (Des	ign F	Rule), CI	m ock F	- ìBG/ ⁼req.	A is lic / Ran	lless(dom o	bare cycle	chip) time	BGA	*****
Vetwork Edition Constraint Constraint <th>Category</th> <th>Features Package</th> <th>Density</th> <th></th> <th>CY2</th> <th>003</th> <th></th> <th></th> <th>CY:</th> <th>2004</th> <th></th> <th>CY2</th> <th>2005</th> <th>CY</th> <th>2006</th> <th>CY2</th> <th>2007</th>	Category	Features Package	Density		CY2	003			CY:	2004		CY2	2005	CY	2006	CY2	2007
 x16: Bi-directional LO29,UDQS SSTL2 // E SSTL2 // E	letwork CRAM1	66pin TSOP II-400(0.65mm) • 4bank • x8 : Bi-directional DQS	256Mb (x8/x16)	1Q "C"(0. 66pi	2Q 175D ur in TSOP	3Q m) 2001	4Q MHz /	1Q 25ns	2Q	3Q →	4Q "E"(1 △	1H 10nm) (Δ	2H 333MHz	1H / 20ns	2H	1H	2H
176: B-01/BECOMAINSTEL 2/PC (noly for 512/M) 150 151 15 151 15		x16: Bi-directional LDQS,UDQS SSTL-2 VF 60ball mBGA(1.0x1.0 mm) 4bank(256Mb), 8bank(512Mb) x8: Bi-directional DQS, /DQS vis0 Bi-directional DQS, /DQS	512Mb (x8/x16)	60ba	all mBGA		" A " (∆	130nm A	n) 266	MHz / t	RC=22	2.5ns	"в"(1 ДД	10nm) 3	33MHz "A"(90 △ △	20ns nm)	
Struct E0ball mEGA(1.0x1.0 mm) 288Mb TO' (130nm) 333MHz / 20ns, x18 I/O x18: 60ball mEGA x18: 60ball mEGA x18: 60ball mEGA & Un-directional DS/OS (per x18) SSTL-18 I/F and HSTL I/F		 SSTL-2 I/F(only for 512Mb) SSTL-1.8 I/F and HSTL 	1Gb (x8/x16)									l			"A"(90 △ △	nm)	
Same features as 288Mb(x18) TAG test mode S76Mb (x9/x18/x36) New features for FCRAM2* ODT SIds OVE OVE SOME COD SOME	letwork CRAM2 & letwork	60ball mBGA(1.0x1.0 mm) • 4bank(288Mb), 8bank(576Mb • Uni-directional DS/OS (per x18 • SSTL-1.8 I/F and HSTL I/F 144ball mBGA(1.0x0.8 mm)	288Mb (x9/x18/x36)	"D" (1	30nm) "D"(130	333MH Dnm) 33	z / 20r 33MHz	ns, x1 z / 20n	8 I/O s, x36		<18: 60 <36:144 "Е" (Д	ball mBG ball mBG 110nm)	:A :A → 144 400MH:	iball mole z / 20ns	BGA(C:	S in May	(04)
QVLD ZQ type OCD 1.152Gb	CRAMZ	Same features as 288Mb(x18) JTAG test mode New features for FCRAM2* ODT BL8 Differential DS and QS	576Mb (x9/x18/x36)	N	etwo	18: 601 36: 144 ork	ball mo ball mo FCF	Id BGA	 12⁺			→[["B"("B" (11 △ △ 110nm) △ ▲	0nm) 40	00MHz / z / 20ns "A"(90 △ △	20ns, J , All I/C nm)	AII I/O
(x9/x18/x36)		QVLD ZQ type OCD	1.152Gb (x9/x18/x36)									44ball mo	Nd BGA		"A"(90 △ △	nm)	

Clock Frequency	- 30 T	333	MHZ	285.7	MHZ	250	MHZ
					4 ns		
Cas Latency	CL	6		5)	4	
	tRC	~21	7	~21	6	~20	5
		ns	Т	ns	Т	ns	Т
Clock Frequency	- 33	300	MHz	266.7	MHz	222.2	MHz
Clock period	Т	3.33 ns 3.75 ns			4.5 ns		
Cas Latency	CL	6		5		4	
	tRC	~23.3	7	~22.5	6	~22.5	5
		ns	Т	ns	Т	ns	Т
Clock Frequency	- 40	250	MHz	222.2	MHz	200	MHz
Clock period	Т	4 1	าร	4.5	ns	5 r	ıs
Cas Latency	CL	6		5	5	4	
	tRC	~28	7	~27	6	~25	5
- bank refresh, all d	evices tRFC		25		23		19
		ns	Т	ns	Т	ns	Т
?3.9µs period for 4 ?Maximum clock pe ?Recall the disclaim	-bank refrest eriod is 7.5n: ner!	h s on all	device	s			

FCRAM II Performance Model

Command	To Same Bank	To Different Bank
Common I/ O [Device	
R to R	TRC	2
R to W	TRC	BL/2+2
W to W	TRC	2
W to R	TRC	2

? TRC = CL + 1
? Write latency = CL - 1
? BL = 2 or 4- word burst length.
? Notice for total bus turnaround 2 cycles are lost regardless of BL
? Recall the disclaimer!

FCRAM	II+ Pe	rfor	ma	nce N	//00	del	
Clock Frequency		?_M	Hz _				
Clock period	Т	?	,				
Cas Latency	CL	TRC	- 1				
	tRC	20	8				
		ns	Т				
	•	20	6	300MHz			-
		20	7	350MHz			
		20	8	400MHz			
		20	9	450MHz			
 ? tRC range is 6-9 c ? This is speculative data sheets. tRC m ? Refresh takes tRC of These assumptions 	ycles, calcula , based only (ight be less t cycles, requir s may be inco	te as ^t R(on prese han 20r ed every prrect.	C/ ^t CK. entatio ts y 488r	ons, not To ns, 8 bank	oshib devid	a ce	
?Recall the disclaim	er!						
						AIC	ror
September 04		107			Ŷ		

FCRAM II+ Performance Model

Command	To Same Bank	To Different Bank
Common I/ O Devic	Ce	
R to R	TRC	max(BL/2,2)
R to W	TRC	BL/2+2
W to W	TRC or TRC+2 if BL8 MBW	max(BL/2,2)
W to R	TRC or TRC+2 if BL8 MBV	max(BL/2,2)

? This is speculative, based only on presentations, not Toshiba data sheets. ? Write latency = CL - 1

- ? BL = 2, 4 or 8- word burst length.
- ? MBW is Multi Bank Write, i.e. dual- bank write not used in today's performance scenarios
- ? Notice for total bus turnaround 2 cycles are lost regardless of BL
- ? Recall the disclaimer!

GDDR3 SDRAM Performance Model

Clock Frequency		700	700 MHz		MHz	500	MHz			
Clock period	Т	1.42	9 ns	1.667 ns		2	ns			
Cas Latency	CL	9		8		7	7			
		ns	Т	ns	Т	ns	Т			
ACT to same bk ACT	tRC		31		27		21			
ACT to R	tRCDR		10		9		7			
ACT to W	tRCDW		6		5		4			
ACT to PRE	tRAS		22		19		15			
PRE Period	tRP		9		8		6			
W to PRE	tWR		9		8		7			
Internal W to R	tWTR		3		3		3			
ACT to diff bk ACT	tRRD		8		7		5			
Auto RFSH period	tRFC		39		33		27			
Last data in to R	tCDLR		5		4		3			
Write Latency	WL		5		5		4			
? WL is programmable; ? T represents 1 clock ? Maximum clock perio	write Latency WL 5 5 4 ? WL is programmable; value shown is used in model ? T represents 1 clock cycle ? Maximum clock period is 3.33 ns									

117

Micron

? Recall the disclaimer!

Commanu	To Same Bank	To Different Bank
W to R	WL + BL/2 + T WTR	1
W to W	BL/2	BL/ 2
W to PRE	WL + BL/2 + TWR	1
Wto ACT		1
R to R	BL/2	BL/ 2
R to W	CL + BL/2	CL + BL/2 + 1 - WL
R to PRE	2	1
R to ACT		1
ACT to ACT	TRC	TRRD
ACT to R	TRCDR	1
ACT to W	TRCDW	1
ACT to PRE	TRAS	1
Refresh is 32ms BL = 4. 4 bank Auto precharge	s, 4K = 7.8125 µs periodic. s. not enabled.	
Pocall the dical	o im or	
? Recall the discla	aimer.	2

Clock Frequency	400MHz (2. Device A o	5ns) or B	300MHz Devi	(3.3ns) ce A			
Clock period	Т	A dev	ice (T)	Bdev	ice (T)		
		same b	different	same b	different		
ACT to ACT	tRC / tRR	16	4	20	4		
ACT to R	tRCD-R	5	1	7	1		
ACT to W	tRCD-W	1	1	3	1		
ACT to PRE	tRAS	10	1	13	1		
PRE Period (P to A)	tRP	6	-	7	-		
RtoQ	tCAC	6	-	7	-		
W to D	tCWD	3	-	3	-		
R to R or W to W	tCC	2	2	2	2		
R to W	tdRW	8	8	9	9		
W to R	tdWR	9	2	10	2		
W to PRE	tWRP	10	1	12	1		
R to PRE	tRDP	3	1	4	1		
Auto RFSH period	tRFC	16	-	20	-		
Refresh interval		488ns		488ns			
?T represents 1 clock cycle ?Maximum clock period is 3.83ns (261 MHz) ?Note: 500 MHz spec (XDR4000Mb/ s) is excluded from performance analysis – too far out! Recall the disclaimer!							

Performance Analysis Methodology (continued)

• Objective is to compare all memory devices fairly

- Expose each one to the identical request steam
- Controllers independently allowed to optimize request stream limited by common constraints
 - e.g. allowed to switch threads if stalled

None of today's examples use multi- threading

127

Micron

- Frequency sweep of all devices for each scenario
 - Include "sweet spot" for each memory

Clock Frequency	Clock Period	Frequencies of Interest Especially Pertain To-
(MHz)	(ns)	
76 9	13	DDR SDRAM
100	10	
125	8	DDR2 SDRAM
133.3	7.5	DDR SDRAM. FCRAM2
150	6.667	RLDRAM2
166 7	6	DDR SDRAM
200	5	DDR SDRAM, DDR2 SDRAM, RLDRAM2, FCRAM2
222.2	4.5	FCRAM2
250	4	RLDRAM2, FCRAM2, ALL SRAM
261.1	3.83	XDR
266.7	3.75	DDR2 SDRAM, RLDRAM2, FCRAM2
285.7	3.5	FCRAM2
300	3 3 3	RIDRAM2 FCRAM2 FCRAM2+ GDDR3 XDR
333.3	3	DDR2 SDRAM, RLDRAM2, FCRAM2, QDR2/DDR2 SRAM
350	2 857	RIDRAM2 ECRAM2+
400	2.5	RLDRAM2, FCRAM2+, XDR
450	2.222	FCRAM2+
466.7	2.143	RLDRAM2
500	2	GDDR3. QDR3/DDR3 SRAM
533 3	1 875	RI DRAM2
600	1.667	GDDR3
700	1.429	GDDR3

Fair Comparison Chart 32b Base Data Size (16b x 2 Word Burst)										
Device BL2 BL4 BL8 BL16 BL32 BL64										
16b DDR SDRAM, 16(18)b RLDRAM2CIO & FCRAM2+	2	4	8	2x 8	4x 8	8 x 8				
16b DDR2 SDRAM	-	4	8	2x 8	4x 8	8 x 8				
16b FCRAM2, 16(18)b DDR2 SRAM	2	4	2x 4	4x 4	8x 4	16x 4				
8(9)b RLDRAM2SIO	4	8	2x 8	4x 8	16x 8	32x 8				
8b XDR	-	-	16	2x 16	4x 16	8x 16				
8(9)b QDR2 & QDR3 SRAMs	4	2x 4	4x 4	8x 4	16x 4	32x 4				
16(18)b DDR3 SRAMs	2	2x 2	4x 2	8x 2	16x 2	32x 2				
8(9)b DDR2SIO SRAM	2x 2	4x 2	8x 2	16x 2	32x 2	64x 2				
September 04	1	31			Mi	croi				

Fair Comparison Chart 64b Base Data Size (32b x 2 Word Burst)

Device	BL2	BL4	BL8	BL1 6	BL32	BL6 4	BL128
32b GDDR3 SDRAM	-	4	8	2 x 8	4x 8	8 x 8	16x 8
16b XDR	-	-	16	2x 16	4x 16	8x 16	16x 16
32(36)b RLDRAM2CIO & FCRAM2+	2	4	8	2 x 8	4 x 8	8 x 8	16x 8
16(18)b RLDRAM2SIO	4	8	2 x 8	4x 8	8 x 8	16x 8	32x 8
32b FCRAM2	2	4	2x 4	4x 4	8x 4	16x 4	32x 4
16(18)b QDR2, DDR2SIO, QDR3 SRAMs	4	2x4	4x 4	8x 4	16x 4	32x 4	64x 4
32(36)b DDR2 & DDR3 SRAMs	2	4	2 x 4	4x 4	8x 4	16x 4	32x 4
September 04		132			4	MIC	IOU

