Terabit Clockless Crossbar Switch in 130nm

Nexus Silicon Validation Chip Project

Block diagram of Nexus Validation Chip

Die photo of Nexus crossbar circuit

Chip characteristics

16-port asynchronous crossbar

1.4 GHz (effective frequency)

1.6 Tbps capacity (aggregate)

>400 Gbps / Watt (aggregate)

<3ns latency (+ target clock)

1.75mm² (crossbar size)

7 independent clock domains

Project details

Semi-custom async design flow

6-month effort (start to tape-out)

~1M transistors (500K in Nexus)

Standard 130nm fab process

Introduction to Fulcrum

- Description of Integrated Pipelining
 - Fulcrum's clockless circuit architecture

- Review of Nexus
 - Fulcrum's Terabit crossbar

- Introduction to PivotPoint
 - Fulcrum's first commercial product

PivotPoint

Company Snapshot

"Clockless" Semiconductor Company

Formed out of Caltech (1/00)

Technology proven in large-scale designs

Located in Calabasas, CA (30 people)

NEW ENTERPRISE ASSOCIATES

Backed by top-tier investors (raised \$14M in June)

Fulcrum Confidential

- Fulcrum's first commercial product

Introduction to PivotPoint

Review of Nexus

Agenda

- - Fulcrum's Terabit crossbar

Introduction to Fulcrum

- Fulcrum's clockless circuit architecture

Description of Integrated Pipelining

Fundamental Mode (The Beginning)

Race conditions led to the addition of the latch

Predates invention of the clock (combinational logic with feedback)

Clock and Latches Introduced

Circuits became predictable, enabling larger designs

Predominant design style for several decades

Bundled Data (Micro Pipelines)

Delay element tuned to each logic block

Synchronous-style data path; asynchronous channels (Ivan Sutherland, Sun Labs)

Delay-Insensitive (Traditional)

Robust and low power, but also large and low performance

Dynamic logic; similar number of N and P transistors; separate latches (Early MIT and later Caltech research)

Fulcrum's Integrated Pipelining

Robust, power efficient, and high performance

Fast delay-insensitive style using domino logic without latches (Developed at Caltech by Fulcrum's founders)

Integrated Pipelining

Harnessing the power of Domino Logic

- Addresses delay variability with Completion Sensing
- Addresses power inefficiency with Asynchronous Handshakes
- Leverages more efficient "N" transistors

The Advantages of Asynchronous

High performance (cycle-time efficient)

Power efficient

- No clock tree
- No wasted logic transitions perfect clock gating
- Robust
 - Wide operating range of temperature and supply voltage

High integration

- Eases the transition between multiple clock domains

(Perceived) Disadvantages

- Limited commercial tool support
 - Migrating to commercial tools; partnered with tools providers

Additional wires

- Feasible in modern fabrication processes

Area overhead

- Comparable to high-speed synchronous overhead
- Excellent throughput/area

Fulcrum Design Flow

Hierarchical design flow

- Executable specifications
- Formal decomposition
- Creates design hierarchy

Semi-custom synthesis & layout

- Hierarchical floor planning
- Automated transistor sizing
- Semi-automated physical design

Supports synchronous & asynchronous designs

- Hard macro from place & route

Agenda

Introduction to Fulcrum

- Description of Integrated Pipelining
 - Fulcrum's clockless circuit architecture

- Review of Nexus
 - Fulcrum's Terabit crossbar

- Introduction to PivotPoint
 - Fulcrum's first commercial product

Nexus System-on-a-Chip Interconnect

- Synchronous IP block
 - Asynchronous IP block
- Pipelined repeater
- Clock domain converter

- Non-blocking crossbar
- 16 full-duplex ports
- Self-queuing ports extend through the crossbar
- Line rate arbitration
- Arbitrary-length "bursts"
- Seamlessly bridges between clock domains
- Scales in bit width and ports
- Process independent

Nexus Burst Format

Arbitrary-length source-routed bursts provide system flexibility

Nexus Validation Chip (TSMC 130nm)

Nexus Validation Chip Key System Blocks

High capacity

- 1.6 Tbps aggregate b/w
- 800 Gbps cross-section b/w

Low latency

- Less than 3ns (+ target clock)

Power efficient

- > 400Gbps per Watt (aggregate)
- Scales linearly with activity
- Zero standby power

Area efficient

- 1.75mm² (crossbar)
- 2mm² (converter & repeaters)

Fabrication process:

- TSMC 130nm LowK
 - 25mm shuttle
- Also fab'd in TSMC 130nm FSG
 - 25mm² shuttle

Predictable Operation Over Voltage

1.4GHz at nominal voltage (1.2V)

Robust Operation Over Temperature

Predictable operation from -55°C to 125°C

Fulcrum Confidential

microsystems

Agenda

Introduction to Fulcrum

- Description of Integrated Pipelining
 - Fulcrum's clockless circuit architecture

- Review of Nexus
 - Fulcrum's Terabit crossbar

Introduction to PivotPoint

- Fulcrum's first commercial product

Introducing PivotPoint Blade Interconnect

- Large-scale SoC design
 - >32.5M transistors (83% async)
 - 14 separate clock domains

Includes key Fulcrum IP

- Nexus Terabit Crossbar
- Quad-port 600MHz async SRAM
- Operates at over 1GHz
- **Delivers 192Gbps of non**blocking switching capacity
- Testable via standard tools JTAG: scan chain
- Activity-based power scaling
- 9-month project

Historical Architecture (Doesn't Scale)

Systems have outgrown the effective capacity of the bus

Generic Bus-Based "Blade"

- System performance bottlenecked by bus-based interconnect
 - Bus electricals inadequate for today's high-speed designs
 - Traditional load/store model inefficient for streaming data

Today's Problem: No Hardware Flexibility

Fixed-configuration solutions limit configuration flexibility

Generic Discretely-Connected "Blade"

- Solution to bus-based problems
- Creates new architecture problems:
 - Inefficient use of in-line devices
 - Sharing ingress and egress resources is prohibited

PivotPoint Eliminates Deficiencies

Creates soft-configurable pool of resources

High performance

- Low latency
- High capacity
- Sophisticated flow control

Highly flexible

- Fully programmable
- Any-to-any connectivity
- Source routing; channel switching

Low cost

- Fewer blade variants required
- Lower per-unit cost than FPGAs
- Lower design cost than ASICs

Power efficient

- Low power profile
- Power scales linearly on activity

An Illustration of Complex Flows

Supports complex flows through channel assignment

Fulcrum Confidential

microsvstems

Low-Cost Multi-Gigabit Router

PivotPoint supports high-capacity routing

- NPUs classify packets, identify destination, and assign appropriate SPI-4 channel
- PivotPoint routes based on SPI-4 channel

PivotPoint Leverages Nexus

A true SoC GALS design

Flexible architecture

- 6 duplex SPI-4.2 interfaces
- All paths are independent

Optimized for performance

- Up to 14.4Gbps per interface
- Up to 32Gbps per Nexus port
- Full-rate buffer memories
- Lossless flow control

Easily configurable

- 16-bit CPU interface
- JTAG support

Modest size and power

- ~2 Watt per active interface
- 1036 ball package

Pivo

The Future of PivotPoint

Efficiently link the data plane with the "midplane"

Control Plane System-level control, configuration, exception handling, and monitoring

"Midplane" With PivotPoint at the heart, the midplane features all of the software-driven intelligence for layer 4-7 services

> Data Plane Organized for highspeed packet parsing and forwarding

System Line Card (logical view)

Differentiating Through Technology

Leveraging our clockless technology foundation

Clockless Technology Foundation

Silicon proven and customer validated

Mature CAD flow (integrated with commercial tools)

Robust cell library (thousands of unique cells)

Thank You!

"A group of engineers wants to turn the microprocessor world on its head by doing the unthinkable: tossing out the clock and letting the signals move about unencumbered. For those designers, inspired by research conducted at Caltech, **clocks are for wimps**."

Anthony Cataldo , EE Times

