

0

The Whole Earth Simulator

A)

- The World's Fastest Supercomputer -

Kiyoshi Otsuka JAMSTEC/Earth Simulator Center (otsukak@jamstec.go.jp)

Tadashi Watanabe **NEC** (t-watanabe@db.jp.nec.com)

Development Organization and Schedule

Project Leader: Late Mr. Hajime Miyoshi

The Earth Simulator Center

-An Organization of Japan Marine Science and Technology Center(JAMSTEC)

Basic Principles for Operating the Earth Simulator

· Quantitative Prediction and Assessment of Variations of the Atmosphere, Ocean and Solid Earth

• Production of Reliable Data to Protect Human Lives and Properties from Natural Disasters and Environmental Destruction

Contribution to Symbiotic Relationship of Human Activities with Nature

• Promotion of Innovative and Epoch-making Simulation in any Fields such as Industry, Bioscience and Energy

3

System and Hardware

Earth Simulator System

System Peak Performance Total No.of Arithmetic Processors(APs) Peak Performance/AP Total No.of Processor Nodes(PNs)

Total Main Memory Capacity Disk Storage Mass Storage 40TFLOPS 5,120 8GFLOPS 640 (8APs/Node:64GFLOPS/Node) 10TBytes 640TBytes 1.5PBytes 6

Central Subsystem

⁽Courtesy of JAMSTEC/Earth Simulator Center)

(Courtesy of JAMSTEC/Earth Simulator Center)

Arithmetic Processor (AP)

Interconnection Network(IN)

Data Paths in Interconnection Network(IN)

(Courtesy of JAMSTEC/Earth Simulator Center)

Earth Simulator Building

(Courtesy of JAMSTEC/Earth Simulator Center)

Inter-node Communication Cables

(Courtesy of JAMSTEC/Earth Simulator Center)

Cross-Sectional View of the Earth Simulator Building

Processor Node(PN) Cabinet

One Chip Vector Processor(AP)

·0.15 µ CMOS

(Courtesy of JAMSTEC/Earth Simulator Center)

17

- 8 layers copper interconnection
- ·20.79mm *20.79mm
- •60million Tr
- •5185pins
- 'Clock Frequency :500MHz(1GHz)
- Power Consumption:140W (typ.)

AP Package

(Courtesy of JAMSTEC/Earth Simulator Center)

Memory Package

(Courtesy of JAMSTEC/Earth Simulator Center)

19

LSI Specifications

LSI Specifications

- LSI Design Design rule (µm) Die size (mm) Number of transistors Operating frequency (MHz) Metal layer Number of I/O (Sig.) I/O pitch (µm) Power supply voltage (V) Mounting
- Full-custom 0.15 20.79 x 20.79 (AP) 60 million (AP) 500 Copper : 8 5,185 (1,986) (AP) 200 1.8 Flip-chip

Memory Device Specifications

128
8
133
21.6
30
2.55 (I/O 1.8)
100pin µ-BGA
1

21

AP&MMU Packages

Specifications of AP & MMU packages

	AP	MMU	
Substrate	Build-up printed circuit board		
Size (mm)	100 × 115	120 × 105	
Thickness (mm)	1.57		
Number of layer	4 build-up layers on both sides		
	6 core layers		
Line/Space (µm)	25 / 25		
Via/Land (µm)	50 / 75		
Wiring length (m)	175	120	
Device	CPU LSI x1	MMC LSI x1	
	(Flip-chip)	(Flip-chip)	
		128Mb-FPLRAM x48	
		(µ-BGA)	
Number of I/O terminal (Sig.)	3,960 (1,980)	1,200 (600)	
I/O terminal pitch(mm)	0.5		
Power dissipation(W)	140	60	

Operation System Overview

✓ Operation and management system for huge distributed memory system ~~~ 90000000000 5120 APs 1000000 64GFLOPS 640 PNs booood Each PN equal to the large super computer 60000000 1 system

Operating System Overview

Operating System Overview

Multi-node parallel program execution environment

✓OS provides the global address space between PNs (memory protection proof)

✓ MPI library transfers data directly using IN data transfer instructions, without systemcall

Execution of large scale job

Large distributed parallel jobs

Job Execution

Automated file recall and migration

MPI (Message Passing Interface)

- ✓ Standard specification of message passing library for parallel processing
- ✓ Common API specification (platformindependent)
- ✓ Library procedure interface which can be called from C , C++ , Fortran programs
- ✓ May,1995 MPI-1.1 specification release
- ✓ July, 1997 MPI-1.2 and MPI-2 specification release
- ✓ ES supports full MPI (MPI-2) specification

MPI data transfer MPI library selects appropriate communication procedure

- ✓ Intra-node: memory copy using vector load and vector store instructions
- ✓ Inter-node: data transfers directly using IN data transfer instructions

HPF (High Performance Fortran)

- ✓ Extension of Fortran language for distributedmemory parallel computer system
- ✓ Defacto standard
- ✓ Easy to write, high portability (Fortran + directives)

HPF (High Performance Fortran)

The 3 Phases of parallel program development:

- (a) Data partitioning/allocation to the parallel processor
- (b) Computation divide/scheduling to the parallel processor
- (c) insert the communication code

HPF automates (b), (c) phases

	MPI	HPF	
(a) Data mapping/allocation	manual	manual	
(b) Computation divide/scheduling	manual	automatic	
(c) Insert the communication process	manual	automatic	
The case of typical isotopic simulation :			
Parallelization	Modify whole program	Add directives (about 5%)	
Performance	100%	About 70-80%	
		25	

Peak Performance

System Performance	40TFLOPS
Per Node(8APs)	64GFLOPS
Per Processor	8GFLOPS

Bandwidth

Memory to Processor	32GB/sec
Per Node(8 SMP)	256GB/sec
Inter-node Per node	12.3GB/sec * 2

LINPACK(HPC)

Sustained Performa	ince 35	35.86TFLOPS(87.5% efficience	
MPI Start-up cost	internode	intranode	
MPI_Get	6.68 µ s	1.27 µ s	27
MPI Put	6.36	1.35	37

Internode Communication Bandwidth

Barrier Synchronization

(Courtesy of JAMSTEC/Earth Simulator Center)

39

Application Performance

Global Atmospheric Simulation
Direct Numerical Simulation of Turbulence
Three-dimensional Fluid Simulation for Fusion Science with HPF

:26.58TFLOPS(66.5%) :16.4TFLOPS(41.0%) :14.9TFLOPS(38.3%)

Earth Simulator Performance by Groups Nodes/GFLOPS

Copyright :JAMSTEC/Earth Simulator Center

42

Copyright :JAMSTEC/Earth Simulator Center

