
Page 1

Hot Chips 15

Erik Norden

Senior Architect

N e v e r s t o p t h i n k i n g
.

A Multithreaded RISC/DSP Processor

with High Speed Interconnect

Page 2

Agenda

TriCore 2 Overview

Microarchitecture

High Speed Interconnect

Multithreading

Hardmacro Development

Summary

Page 3

Control and DSP Functionality

Small Core AreaSmall Core Area

Small Code SizeSmall Code Size

DSP Instruction SetDSP Instruction Set

Scalable SolutionsScalable Solutions

ConfigurabilityConfigurability

Real Time PerformanceReal Time Performance

Small, Fast System-on-Chip and
Embedded Core Solution

Low Cost
High Performance

Low Power

The Embedded Processing Challenge

Overcome Memory
Bottleneck
Overcome Memory
Bottleneck

Page 4

TriCore 2 Microprocessor System

ISA superset of TriCore 1
family, the first unified
RISC/DSP architecture

6-stage superscalar
pipeline

Multithreading extension
(optional)

Improved co-processor
interface / support

Improved optional
floating point unit (FPU)

High bandwidth system
interconnect hierarchy

Program
Scratch RAM

Program
Scratch RAM

Program
Cache

Data
Scratch RAM

TriCore 2
Core

Bus Interface Unit

System Bus

Data Cache

Data
Scratch RAM

MMU

Interrupt &
Debug Unit

Interrupts

Other IPOther IP

FPU

Crossbar (64 bit)

Bridge

Page 5

Configurability

Configurable / scalable:

– Instruction cache and
data cache sizes

– Instruction scratch and
data scratch memory
sizes

– Crossbar: number of
master and slave ports

Optional:

– Multithreading extension

– FPU

– MMU

– Individual co-processors

Program
Scratch RAM

Program
Scratch RAM

Program
Cache

Data
Scratch RAM

TriCore 2
Core

Bus Interface Unit

System Bus

Data Cache

Data
Scratch RAM

MMU

Interrupt &
Debug Unit

Interrupts

Other IPOther IP

FPU

Crossbar (64 bit)

Bridge

Page 6

Execute

TriCore 2 Pipeline

Write
Back

Execute
2

Execute
1

Decode

Write
Back

Exec 2/
D-Mem I/F

Execute
1

Decode

Register
File Thread 1

Fetch
P-Mem I/F

Pre-
Decode

Instruction
Buffer

Queue

Register
File Thread 0

Fetch Pipeline

Execution Pipelines

Thread 0 PC

Thread 1 PC

TriCore 2 Pipeline

Integer
Pipeline

Load/Store
Pipeline

Write
BackDecode Loop

Pipeline

Page 7

Problem: Pipeline Effects

Deeper six-stage pipeline achieves MHz goal,
creates IPC problems:

– Longer branch resolution / latency

– Load to use delay slots, use to store delay slots

Possible solution: unrolling DSP loops, with resultant
register pressure

Different characteristic of longer pipeline causes
performance problems for existing DSP code base

Page 8

Efficient DSP Operations

FIR filter (main loop):
L1: dMAC

Load.dw L1: dMAC Load.dw

dMAC dMAC Load.dw Loop

Load.dw

Loop

2 cycles per iteration

Vector multiplication (main loop):
L2: dMUL

Load.dw L2: dMUL Load.dw

dMUL dMUL Load.dw

Load.dw St.dw Loop

St.dw

Loop

3 cycles per iteration

Page 9

Load to Use Delay Slots

Instruction in integer decode stage (Dec) requires load
data from instruction in load/store writeback stage (WB)

Example:

add d3,d0,#1

load d0, [a0]Load/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Dec Ex1 Mem WB

Page 10

Load to Use Delay Slots

Dec Ex1 Mem WBLoad/Store Pipe

Integer Pipe Dec Ex1 Ex2 WB

Instruction in integer decode stage (Dec) requires load
data from instruction in load/store writeback stage (WB)

“Trombone” concept couples load/store pipeline and
integer pipeline to eliminate delay

Integer pipe slides relative to load / store pipe

Example:

add d3,d0,#1

load d0, [a0]

Page 11

“Trombone” concept couples load/store pipeline and
integer pipeline to eliminate delay

Integer pipe slides relative to load / store pipe

Continue issuing instructions to both pipelines

– No issue slots lost

Load to Use Delay Slots

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Instruction in integer decode stage (Dec) requires load
data from instruction in load/store writeback stage (WB)

Example:

add d3,d0,#1

load d0, [a0]

Page 12

Use to Store Delay Slots

Result is ready after the memory pipeline stage

Write target buffers to eliminate stalls due to store operations

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Example:

store [a0],d3

mul d3,d0,d1

Page 13

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Use to Store Delay Slots

Result is ready after the memory pipeline stage

Write target buffers to eliminate stalls due to store operations

So result goes into buffer and uses the next Mem slot

Example:

store [a0],d3

mul d3,d0,d1

Page 14

Use to Store Delay Slots

Result is ready after the memory pipeline stage

Write target buffers to eliminate stalls due to store operations

So result goes into buffer and uses the next Mem slot

And is designed to compensate for “Trombone” concept

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

WB1 WB2

DecInteger Pipe shifted by 1 Ex1 Ex2 WB

DecInteger Pipe shifted by 2 Ex1 Ex2 WB

Page 15

Solution for Pipeline Effects

Branch resolution / latency

– Early resolution & fetch decoupling

Load to use delay slots

– “Trombone” concept couples load/store pipeline and
integer pipeline to eliminate delay

Use to store delay slots

– Write target buffers to eliminate stalls due to store operations

Result is:

For DSP code, the TriCore 2 pipeline looks same as
TriCore 1 pipeline

– Existing DSP code base can be re-used, no TriCore 2 specific
performance optimization required

IPC is almost identical to TriCore 1: ~1.5 instructions/clock

Page 16

High Speed Interconnect

Interface to bus / system

– Full 64-bit crossbar

– Full core frequency operation

– Scalable / modular sockets

Local memories

External interfaces

Busses / cores

Isolation of local traffic

Maximum concurrent
bandwidth

SRI

TriCore 2
Core

Interrupt &
Debug Unit

Other IP
e.g.
2nd CPU,
Intelligent
accelerator

High-Speed
Crossbar (64 bit)

System Bus

Bridge

Other IP
e.g.

Ext. Bus Unit,
Local Memory,

DMA Unit

Bus I/F Unit
Program DataDebug

SRI

SRI SRI SRI

SRI

Page 17

SRI Protocol: Main Features

Crossbar based protocol

Synchronous bus, 32 bit address, 64 bit data

Burst length: 2 / 4

Single data transactions for 8/16/32/64 bit

RMW transaction support

Supports pipelined transactions

No wait states during block data transmission

System scalability and isolation

Full core frequency operation

Debug- and power saving features

Page 18

A Multiprocessing Core

Program
Scratch RAM

Program
Scratch RAM

Program
Cache

Data
Scratch RAM

TriCore 2
Core

Bus Interface Unit

System Bus

Data Cache

Data
Scratch RAM

MMU

Interrupt &
Debug Unit

Interrupts

Other IP

FPU

Crossbar (64 bit)

Bridge

Other IP

Program
Scratch RAM

Program
Scratch RAM

Program
Cache

Data
Scratch RAM

TriCore 2
Core

Bus Interface Unit

Data Cache

Data
Scratch RAM

MMU

Interrupt &
Debug Unit

Interrupts

FPU

Local MemoryDMA

Page 19

Multithreading

Deadline

Memory Resident Task

Typical Core

Multithreaded Core Saved
Execution Time

Tasks Interrupt Service Routines

Stalls due to Cache Miss

Memory Resident
Task

Deadline

Tasks Interrupt Service Routines

Page 20

Target Application Profile

Typically a mix of :

– General purpose tasks

E.g. control/protocol related

With large code footprint

Reside in cached off-chip flash

– Algorithmic (DSP) tasks

With small code footprint

Fit in fast on-chip memory (scratch memory) - memory
resident tasks

Common profile of many deeply embedded
systems

Page 21

TriCore 2 Multithreading Extension

Block multithreading – 2 threads supported

– High performance gain and power minimization

– Diminishing benefits for more than 2 threads

Thread switching is primarily on instruction cache
misses.

Thread timer guarantees minimum execution time for
both threads.

New “YIELD” instruction allows one thread to relinquish
execution to the other

Maintains compatibility with existing processor
architecture

2 virtual processors, two copies of processor state are
present in the CPU

Page 22

Improved System Performance

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

M iss Rate %

E
ff

e
c

ti
v

e
 C

P
U

 M
H

z

Typical multithreading
performance area

Multithreading: One thread in scratch memory

Multithreading: Both threads
in cache with same miss rate

No multithreading

In all 3 cases: CPU at 333 MHz; 66 MHz 32-bit flash
on crossbar

Typical Cache Performance Area

~200% to 400% Improvement

Mobile Handset
Automotive

Engine Control

Page 23

TriCore 2 Hard Implementation

0.13 micron technology

Core area: 3 mm2

Hardmacro area: 8 mm2

includes CPU, MMU, Multithreading extension,
FPU, 160 Kbyte total memory

Frequency 400-500 MHz (typical)

1.5 MIPS / MHz (typical compiled code)

2 MMACS / MHz

0.5 mW/MHz @ 1.5V

Page 24

TriCore 2 Multithreaded -
Hardmacro

ProgramProgram
ScratchScratch

MemMem
22

AddressAddress

RegFileRegFile

DataData

RegFileRegFile

InstrInstr BufferBuffer Tag Tag
MemoriesMemories

MMUMMU

ProgramProgram
CacheCache

DataData
CacheCache

ProgramProgram
ScratchScratch

MemMem
11

DataData
ScratchScratch

MemMem
11

DataData
ScratchScratch

MemMem
22

Page 25

TriCore 2 Summary

High configurability

– Scratch memory and cache sizes

– Optional FPU, MMU, coprocessors, multithreading

High performance

– Efficient pipeline

Multithreading

– Saves costs and power consumption

Open, scalable crossbar architecture

– SRI protocol

– Efficient concurrent communication to code and data
memory and other IP

Multiprocessing capability

Hot Chips 15

Never Stop Thinking

Erik Norden, Senior Architect

Erik.Norden@infineon.com

http://www.infineon.com

