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Control and DSP Functionality

Small Core AreaSmall Core Area

Small Code SizeSmall Code Size

DSP Instruction SetDSP Instruction Set

Scalable SolutionsScalable Solutions

ConfigurabilityConfigurability

Real Time PerformanceReal Time Performance

Small, Fast System-on-Chip and 
Embedded Core Solution 

Low Cost
High Performance

Low Power

The Embedded Processing Challenge

Overcome Memory 
Bottleneck
Overcome Memory 
Bottleneck
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TriCore 2 Microprocessor System

ISA superset of TriCore 1 
family, the first unified 
RISC/DSP architecture

6-stage superscalar
pipeline

Multithreading extension 
(optional)

Improved co-processor 
interface / support

Improved optional 
floating point unit (FPU)

High bandwidth system 
interconnect hierarchy
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Configurability

Configurable / scalable:

– Instruction cache and 
data cache sizes

– Instruction scratch and 
data scratch memory 
sizes

– Crossbar: number of 
master and slave ports

Optional:

– Multithreading extension

– FPU

– MMU

– Individual co-processors
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Execute

TriCore 2 Pipeline
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Problem: Pipeline Effects

Deeper six-stage pipeline achieves MHz goal,
creates IPC problems:

– Longer branch resolution / latency

– Load to use delay slots, use to store delay slots

Possible solution: unrolling DSP loops, with resultant 
register pressure

Different characteristic of longer pipeline causes 
performance problems for existing DSP code base
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Efficient DSP Operations

FIR filter (main loop):
L1: dMAC

Load.dw L1:  dMAC   Load.dw

dMAC dMAC   Load.dw Loop

Load.dw

Loop

2 cycles per iteration

Vector multiplication (main loop):
L2: dMUL

Load.dw L2:  dMUL   Load.dw

dMUL dMUL   Load.dw

Load.dw St.dw Loop

St.dw

Loop

3 cycles per iteration 
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Load to Use Delay Slots

Instruction in integer decode stage (Dec) requires load 
data from instruction in load/store writeback stage (WB)

Example: 

add d3,d0,#1

load d0, [a0]Load/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Dec Ex1 Mem WB
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Load to Use Delay Slots

Dec Ex1 Mem WBLoad/Store Pipe

Integer Pipe Dec Ex1 Ex2 WB

Instruction in integer decode stage (Dec) requires load 
data from instruction in load/store writeback stage (WB)

“Trombone” concept couples load/store pipeline and 
integer pipeline to eliminate delay

Integer pipe slides relative to load / store pipe

Example: 

add d3,d0,#1

load d0, [a0]
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“Trombone” concept couples load/store pipeline and 
integer pipeline to eliminate delay

Integer pipe slides relative to load / store pipe

Continue issuing instructions to both pipelines

– No issue slots lost

Load to Use Delay Slots

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Instruction in integer decode stage (Dec) requires load 
data from instruction in load/store writeback stage (WB)

Example: 

add d3,d0,#1

load d0, [a0]
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Use to Store Delay Slots

Result is ready after the memory pipeline stage

Write target buffers to eliminate stalls due to store operations

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Example: 

store [a0],d3

mul d3,d0,d1 
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Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

Use to Store Delay Slots

Result is ready after the memory pipeline stage

Write target buffers to eliminate stalls due to store operations

So result goes into buffer and uses the next Mem slot

Example: 

store [a0],d3

mul d3,d0,d1 
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Use to Store Delay Slots

Result is ready after the memory pipeline stage

Write target buffers to eliminate stalls due to store operations

So result goes into buffer and uses the next Mem slot

And is designed to compensate for “Trombone” concept

Dec Ex1 Mem WBLoad/Store Pipe

DecInteger Pipe Ex1 Ex2 WB

WB1 WB2

DecInteger Pipe shifted by 1 Ex1 Ex2 WB

DecInteger Pipe shifted by 2 Ex1 Ex2 WB
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Solution for Pipeline Effects

Branch resolution / latency

– Early resolution & fetch decoupling

Load to use delay slots

– “Trombone” concept couples load/store pipeline and 
integer pipeline to eliminate delay

Use to store delay slots

– Write target buffers to eliminate stalls due to store operations

Result is:

For DSP code, the TriCore 2 pipeline looks same as
TriCore 1 pipeline

– Existing DSP code base can be re-used, no TriCore 2 specific 
performance optimization required

IPC is almost identical to TriCore 1: ~1.5 instructions/clock
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High Speed Interconnect

Interface to bus / system

– Full 64-bit crossbar

– Full core frequency operation

– Scalable / modular sockets

Local memories

External interfaces

Busses / cores

Isolation of local traffic

Maximum concurrent 
bandwidth

SRI

TriCore 2
Core

Interrupt & 
Debug Unit

Other IP
e.g.
2nd CPU,
Intelligent 
accelerator

High-Speed
Crossbar (64 bit)

System Bus

Bridge

Other IP
e.g.

Ext. Bus Unit,
Local Memory,

DMA Unit

Bus I/F Unit
Program DataDebug

SRI

SRI SRI SRI

SRI
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SRI Protocol: Main Features

Crossbar based protocol

Synchronous bus, 32 bit address, 64 bit data

Burst length: 2 / 4

Single data transactions for 8/16/32/64 bit 

RMW transaction support

Supports pipelined transactions

No wait states during block data transmission

System scalability and isolation 

Full core frequency operation

Debug- and power saving features 
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A Multiprocessing Core
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Multithreading

Deadline

Memory Resident Task

Typical Core

Multithreaded Core Saved 
Execution Time

Tasks Interrupt Service Routines

Stalls due to Cache Miss

Memory Resident 
Task

Deadline

Tasks Interrupt Service Routines
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Target Application Profile

Typically a mix of :

– General purpose tasks

E.g. control/protocol related 

With large code footprint

Reside in cached off-chip flash

– Algorithmic (DSP) tasks

With small code footprint

Fit in fast on-chip memory (scratch memory) - memory 
resident tasks

Common profile of many deeply embedded 
systems
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TriCore 2 Multithreading Extension

Block multithreading – 2 threads supported

– High performance gain and power minimization

– Diminishing benefits for more than 2 threads

Thread switching is primarily on instruction cache 
misses. 

Thread timer guarantees minimum execution time for 
both threads.

New “YIELD” instruction allows one thread to relinquish 
execution to the other

Maintains compatibility with existing processor 
architecture  

2 virtual processors, two copies of processor state are 
present in the CPU
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Improved System Performance 
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Typical multithreading 
performance area 

Multithreading: One thread in scratch memory

Multithreading: Both threads 
in cache with same miss rate 

No multithreading 

In all 3 cases: CPU at 333 MHz; 66 MHz 32-bit flash 
on crossbar

Typical Cache Performance Area

~200% to 400% Improvement

Mobile Handset
Automotive

Engine Control
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TriCore 2 Hard Implementation

0.13 micron technology

Core area: 3 mm2

Hardmacro area: 8 mm2

includes CPU, MMU, Multithreading extension, 
FPU, 160 Kbyte total memory

Frequency 400-500 MHz (typical)

1.5 MIPS / MHz (typical compiled code)

2 MMACS / MHz

0.5 mW/MHz @ 1.5V
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TriCore 2 Multithreaded -
Hardmacro
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TriCore 2 Summary

High configurability

– Scratch memory and cache sizes

– Optional FPU, MMU, coprocessors, multithreading

High performance

– Efficient pipeline 

Multithreading

– Saves costs and power consumption

Open, scalable crossbar architecture

– SRI protocol

– Efficient concurrent communication to code and data 
memory and other IP

Multiprocessing capability
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