

Sub-lithographic Semiconductor Computing Systems

André DeHon

andre@cs.caltech.edu

In collaboration with Charles Lieber, Patrick Lincoln, and John Savage

Approaching the Bottom

- In 1959, Feynman pointed out we had – "plenty of room at the bottom"
- Suggested:
 - wires ~ 10-100 atoms diameter
 - circuits ~ few thousands angstroms

~ few hundred nm

Approaching the Bottom

Today we have 90nm Si processes
 bottom is not so far away

- Si Atom
 - 0.5nm lattice spacing
 - 90nm ~ 180 atoms diameter wire

Exciting Advances in Science

- Beginning to be able to manipulate things at the "bottom" -- atomic scale engineering
 - designer/synthetic molecules
 - carbon nanotubes
 - silicon nanowires
 - self-assembled mono layers
 - designer DNA

Question

• Can we build interesting computing systems without lithographic patterning?

Primary interest:
 below lithographic limits

Why do we care?

- Lithographic limitations
 - Already stressing PSM
 - ... xrays, electron projection...

Today's Talk

Bottom up tour: from Si atoms to Computing

- Nanowire growth
- Nanowire devices
- Nanowire assembly
- Nanowire differentiation
- Nanowire coding
- Nanoscale memories from nanowires
- Nanoscale PLAs
- Defect tolerance
- Universal Computing blocks defined at nanoscale

SiNW Growth

- Atomic structure determines feature size
- Self-same crystal structure constrains growth
- Catalyst defines/constrains structure

SiNW Growth

SiNW Growth

Building Blocks

Semiconducting Nanowires

- Few nm's in diameter (e.g. 3nm)
 Diameter controlled by seed catalyst
- Can be microns long
- Control electrical properties via doping
 - Materials in environment during growth
 - Control thresholds for conduction

Radial Modulation Doping

Can also control doping profile radially

 To atomic precision
 Using time

Lauhon et. al. Nature 420 p57

DeHon HotChips 2003

 \bigcirc

Devices

Doped nanowires give:

Diode and FET Junctions

Langmuir-Blodgett (LB) transfer

- Can transfer tight-packed, aligned SiNWs onto surface
 - Maybe grow sacrificial outer radius, close pack, and etch away to control spacing

DeHon HotChips 2003

Whang, Nano Letters 2003 (to appear)

Homogeneous Crossbar

- Gives us homogeneous NW crossbar
 - Undifferentiated wires
 - All do the same thing

Control NW Dopant

- Can define a dopant profile along the length of a wire
 - Control lengths by **timed** growth
 - Change impurities present in the environment as a function of time

Gudiksen et. al. Nature 415 p617 Björk et. al. Nanoletters 2 p87

Control NW Dopant

- Can define a dopant profile along the length of a wire
 - Control lengths by **timed** growth
 - Change impurities present in the environment as a function of time
- Get a SiNW banded with differentiated conduction/gate-able regions

Gudskien et. al. Nature 415 p617 Björk et. al. Nanoletters 2 p87

Enables: Differentiated Wires

- Can control which regions of a wire are gate-able
 - Lightly doped regions → gate with low threshold
 - Heavily doped regions → gate with high threshold
- Can engineer so portions of wire oblivious to applied voltage (always conduct) and others controlled

Conduct any field < 5V

Coded Wires

 By selectively making bit-regions on wires either highly or lightly doped

- Can give the wire an address

Unique Set of Codes

- If we can assemble a set of wires with unique codes
 - We have an address decoder
 - Apply a code
 k-hot code
 - Unique code selects a single wire

Statistical Coding

- Unique Code set achievable with statistical assembly (random mixing)
- Consider:
 - Large code space (10⁶ codes)
 - Large number of wires of each type (10^{12})
 - Small array (10 wires) chosen at random
- Likelihood all 10 unique?
 - Very high! (99.995%)

DeHon et. al. IEEE TNANO to appear

Basis for Sublithographic Memory

Connected PLAs

- Programmable OR planes like memory
- NW cross arrays
 for interconnect
- FET planes to restore/invert
- Manhattan routing
- Fully nanoscale computing

Defect Tolerant

All components (PLA, routing, memory) interchangeable; Allows local programming around faults

Universal Computing Device

- Tile Array Block
- Programmable Array
- NOR universal
- Implement any computation

DeHon IEEE TNANO v2n1

Construction Review

- Seeding control NW diameter
- Timed growth controls doping profile along NW
- LB flow to assemble into arrays
- Timed etches to separate/expose features
- Assemble on lithographic scaffolding
- Stochastic construction of address coding allow micro→nanoscale addressing
- Differentiate at nanoscale via post-fabrication programming
- All compatible with conventional semiconductor processing
 - Key feature is decorated nanowires

Summary

- Can engineer designer structures at atomic scale
- Must build regular structure
 Amenable to self-assembly
- Can differentiate
 - Stochastically
 - Post-fabrication programming
- Sufficient for Memories and Universal, Programmable Architecture
- Sufficient building blocks to define computing systems without lithography

Additional Information

- <http://www.cs.caltech.edu/research/ic/>
- <http://www.cmliris.harvard.edu/>

Additional Slides

- Memory Elements
- Logic
- Code Size
- Array Size

Switches / Memories

Collier et. al. Science 289 p1172

Ruekes et. al. Science 289 p04

Diode Logic

- Arise directly from touching NW/NTs
- Passive logic
- Non-restoring
- Non-volatile
 Programmable
 crosspoints

PMOS-like Restoring FET Logic

- Use FET connections to build restoring gates
- Static load
 - Like NMOS (PMOS)
- Maybe precharge

Recall PLA

Operating Array

- Decoders allow program array
 – OR, NOR
- Isolatable
- Dual role of loads during operation
- Output used directly by consumer

Codespace: How Large?

- How large does code space really need to be?
 - Addressing N wires
 - With code space 100N²
 - Has over 99% probability of **all** wires being unique
 - For logarithmic decoder:
 - Need a little over 2k bits of sparse code

Array Size

- Larger crossbar
 - Amortize out microscale addressing overhead
- Smaller crossbars
 - Shorter wires
 - Less capacitance \rightarrow faster, less energy
 - Less likely to fail
 - More efficient for logic

Array Size Summary

Based on

- Relative size of structures
 - Micro vs. nano
- Overhead of current model
- Current defect rate estimates
- Modest arrays appropriate
 - 512 NT/NW per side
 - A(512)=30
 - $A_{side} = 30*90$ nm + (512+11)*10nm
 - 45-65% yield ?
 - 400-800 nm²/crosspoint

DeHon HotChips 2003

90nm DRAM 49,000 nm²

22nm DRAM 3400 nm²?