VASA: Single-chip MPEG-2 422P@HL CODEC LSI with Multi-chip Configuration for Large Scale Processing beyond HDTV Level

J. Naganuma, H. Iwasaki, K. Nitta, K. Nakamura, T. Yoshitome, M. Ogura, Y. Nakajima, Y. Tashiro, T. Onishi, M. Ikeda, and M. Endo

NTT Cyber Space Laboratories Nippon Telegraph and Telephone Corporation Japan

History of MPEG-2 Chips in NTT

- Background and Motivation
- Key Features and Functions
- Main Architecture
- Chip Implementation
- Software Architecture
- Multi-chip Applications

Summary

History of MPEG-2 Chips in NTT

Background and Motivation

- Global wave of digitization in TV broadcasting.
 - Terrestrial digital broadcasting will start in Japan in 2003. Producing programs and exchanging them over broadband digital network will boost their circulation.
- Professional and compact HDTV CODEC systems.
 - 1U half-rack -> Very small board/module
 - 9-chip HDTV -> Single-chip HDTV
- Requirements:
 - Small space & low power consumption
 - New applications beyond HDTV level

VASA: New Single-chip MPEG-2 422P@HL **CODEC LSI with Multi-chip Configuration**

Key Features and Functions

• Single-chip Applications:

- Traditional and advanced high quality CODEC (encoding/decoding),
- Pre-processing for extracting picture characteristics
- Watermarking for digital content protection

• Multi-chip Applications:

- Large scale processing beyond HDTV level for digital cinema and multi-angled live TV
- Multi-view profile for stereo image CODEC
- Multi-channel CODEC with TS multiplexing and de-multiplexing

Mem#(

Enc#0

Enc#1

Mem#1

Enc#1

Mem

Enc#

Mem#

Enc#2

Main Architecture (Approach)

- Re-modeling of "Parallel Encoding"
 - Previous: Individual address spaces model
 - Current: Unique address space model
- Control and data hierarchy
 - Macroblock pipeline schemes in each parallel encoding core (intra-core) and inter-core (intra-chip: top)
 - Two level memory hierarchy for intra- and inter-core

HFCA: Hierarchical Flexible Comm. Architecture

- Dual hierarchical backbones linked to every module
 - *Small* control information: *CPU-BUS*
 - Huge picture data information: System-BUS

Main Architecture (Block Diagram)

Hot Chips 14 - August 2002 J.Naganur

Main Architecture (Intra-core/Intra-chip Comm.)

Main Architecture (Inter-chip Communication)

 Multi-chip configuration (scalability) for large scale processing beyond HDTV level

Main Architecture (Summary)

▶ HFCA (*with MIF & DIF*) Feature and Functions:

• Space and time switching:

Data transfer between each chip, core, module, and sub-module *immediately* or *after a certain time interval* in the same manner.

- Hierarchical structures:
 - CPU-BUS: TRISC + VRISC x 3
 - System-BUS: MIF + DIF x 3
- Controlling DDR-SDRAM and optimizing its active bandwidth
 - Ordinal encoding: 70% (average ratio)
 - Advanced encoding: 85% (average ratio)

HFCA provides sufficient *performance* and *flexibility* for recent high quality CODEC technologies.

Hot Chips 14 - August 2002 J.Naganur

Photograph of VASA

NTT (O

2002 Nippon Telegraph and Telephone Corporation

VASA Physical Features

Technology	0.13-µm 8-level metal CMOS
Number of transistors	61.4 million
Die size Clock frequency	14.0 mm x 14.0 mm 200-MHz
Supply voltage	Core: 1.5V / I/O:3.3V / DDR: 2.5V
Power consumption	3.0 W (at 1080I 422P@HL)
Package	1008-pin FCBGA (35 mm x 35 mm)
External memories	256Mbit (32-bit) 200MHz DDR-SDRAM x2 (for images) and
	32Mbit (16-bit) 100MHz SDRAM x1 (for TRISC large firmware, <i>if necessary</i>)

NTT (O

VASA Functional Features

Video: Profile and level	MPEG-2 {422P,MP}@HL, {422P,MP}@H-14,{422P,MP,SP}@M
	narrow: -225.5/+211.5 (H), -113.5/+125.5 (V)
Search range	wide: -449.5/+435.5 (H), -128.0/+127.5 (V)
Resolution & rate	single-chip: 1920/1440 x 1080 at up to 30 frames per second
	: 1280 x 720 at up to 60 frames per second
	multi-chip: Max. 4096 x 2048 up to 60 frames per second
Pre-processing	Macro block based sophisticated functional filter
Multi-view profile	Stereo image CODEC
Watermark	Original watermark insertion/extraction
Audio: I/O format	Liner PCM or encoded stream (AAC)
User: I/O format	PES format for timecode and other audio and data
/stem: I/O format & bitrate	MPEG-2 TS (188/204 bytes) Max. 300 Mbps
Multi-channel CODEC	Encoding/decoding by TS multiplexing/de-multiplexing

Evaluation and Validation

• Before fabrication,

HW/SW were carefully evaluated and validated using VCS and ASIC emulator through small- and/or full-size images.

• After fabrication,

HW/SW were evaluated and validated using VASA CODEC evaluation boards.

The first silicon is successfully implemented with complete software.

Evaluation board

5

VASA Software Architecture

Multi-chip System Configuration

NTT

Multi-chip Applications (1)

2002 Nippon Telegraph and Telephone Corporation

8

Multi-chip Applications (2)

- Background and Motivation
- VASA Main Architecture
 - Hierarchical Flexible Comm. Architecture
 - Intra-core/-chip & Inter-chip Comm.
- VASA Implementation
 - Chip Specifications
 - Physical & Functional Features
- VASA Software Architecture
- Multi-chip Applications beyond HDTV Level
- VASA is a key LSI for implementing various professional MPEG-2 applications in near future.