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Architectural Drivers

Programmability
Parallelism
Memory bandwidth
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another ligh ting im age

Recent History: GeForce 1&2
First integrated geometry engine & 4 pixels/clk
Fixed-function transform, lighting, and pixel 
pipelines
25M transistors : 0.18um/6LM : 250MHz
25M polygons/sec : 1G pixels/sec
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Rendering in Transition

Pre-2001: pixel “painting”
Image complexity and richness from LOTS 
of pixels
Each pixel derived from 1-2 textures & 
blending
Detail added by transparency and layers

Post-2001 fork in the road:
Paint more simple pixels, faster - embedded 
DRAM OR
Use Programmable Shading to render 
“better” pixels - but, must reduce depth 
complexity
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Examples
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GPUs vs. CPUs

More independent calculations
Enables wide and deep parallelism 

API churn
shorter development cycles -> ASIC

Blend of general- and special- purpose 
compute resources
Both transistor-bound for the foreseeable 
future
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Special-Purpose Hardware

Most efficient implementations of
Cube environment map
Shadow calculations
Anisotropic filtering
Clipping
Rasterization
Log, exp, dot-product

More programmability won’t change this
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Managing DRAM Bandwidth

Very large working sets
Affordable caches cannot support 
long-term reuse
Target is effective streaming with 
local reuse
Supercomputer techniques apply

Latency hiding
Vector operations
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Fit the Machine to DRAM Characteristics

Page locality
DRAMs pages are 1-D
Graphics accesses are 
1-D, 2-D, 3-D in memory

Page misses and read/write turns 
getting more expensive
Granularity
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Unified Memory

Traffic comprises:
Commands primitives,state
Vertex data {x,y,z,w}
Texture samples
Depth values
Colors

Relative amounts vary widely
Powerful programming model
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Eliminate Redundant Traffic

We cache data
Textures, vertices

We cache work
Pixel fragments

Designed for 80 - 90% hit rate (not 99.9%)
Leverage coherence

Engines traverse locally
ex: rasterization order
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Amplify Peak Bandwidth

Lossless compression
Lossy compression

Conservative (undetectable)
Else application must be given the choice

Small-grained random access favors
fixed compression atoms
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Reduce Dead Cycles

Queuing
Amortize read/write turns over longer runs

Multi-bank DRAM scheduling
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Embedded DRAM

Tempting to embed megabytes of DRAM.
But ..

Cannot fit the whole problem
Costs are huge

Will be “just around the corner” for a 
long time
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A Tour of the GeForce4

Texture

Host /  Front End / Vertex Processor

Fr
am

e 
B

uf
fe

r C
on

tr
ol

le
r

Transform and Lighting

Primitive Assembly, Setup & Rasterizer

Occlusion Culler

Pixel Shader

Register Combiners

Pixel Engines (ROP)

process commands
convert to FP

transform vertices
to screen-space

generate pixels

delete pixels that
cannot be seen

determine the colors, transparencies
and depth of the pixel

combine colors and transparencies to
produce final output RGBA

do final hidden surface test, blend
and write out color and new depth
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Host / Front End / 
Vertex Processor

Protocol and physical interface 
to PCI/AGP

Command “ABI” interpreter

Context switch

DMA gather
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Transform and Lighting

Handles persistent attributes
Dispatch
Hides latency from the programmer
Fixed-function modes driven by APIs
Multiple vector floating point processors

256 x 128 context RAM
12 x 128 temp regs
16 x128 input and output
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Vertex Program Examples

Animation
Morphing
Interpolation

Lens Effects 

Range-based Fog
Elevation-based Fog 

Deformation
Warping
Procedural 
Animation
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Primitive Assembly, 
Setup & Rasterizer

Per-triangle parameter setup
Tile walking
Sample inclusion determination
Tiles are traversed in memory page friendly 
order
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Occlusion Culling & Programmable 
Shading

Occlusion Culling reduces Depth Complexity
Calculate Z and determine visible pixels
Eliminate invisible pixels

Programmable Shading enables richer visual quality
Accurately model: reflections, shadows, materials
More textures/pixel
More calculations/pixel – consumes many cycles

Programmable Shading impractical without 
Occlusion Culling
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Occlusion Strategies

Possibilities:
Maintain local conservative data 
structure
Use actual depth buffer data
Or combine the techniques

A coherence problem no matter how 
you slice it.
API depth test is at the far end of the pipe!

Must preserve semantics
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Pixel Shading / Texturing

A pixel shader converts texture 
coordinates into a color using a shader 
program.

Floating point math
Texture lookups
Results of previous pixel shaders

4 stages, 1 texture address op per stage
Compressed, mipmapped 3-D textures
True reflective bump mapping
True dependent textures (lookup tables)
Full 3×3 transform with cubemap or 3-D texture lookup
16-bit-per-component normal maps
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Pixel Shader

Input: values interpolated across 
triangle
IEEE floating point operations
Lookup functions using textures

Large, multi-dimensional tables
Filtered

Outputs an ARGB value that 
register combiners can read
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Input Input Input Input
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Register Combiners

1–8 stages, plus a final combiner
Up to 4 inputs from texture stages, interpolators, constant 
registers, earlier combiners
Fixed set of operations:

Each stage can evaluate A*B+C*D and output result, along 
with A*B, C*D
Alternatively, each stage can evaluate dot products 
instead of multiplies
Can conditionally select A*B or C*D
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Pixel Shading effects

Multi-texturing
Dot products for per pixel lighting 
calculations
Reflections
Shadowing
Custom effects
Pixel math
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Texture

Deeply pipelined cache
Many hits and misses in flight

Compression
4:1 ratio
Palettes
Lossy small-grained fixed ratio scheme

Filtering
Bilinear, tri-linear, 8:1 anisotropic
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Pixel Engines (ROP)

Coalesces shader pixels 
into memory access grain

Performs visibility and blending / 
transparency calculations 
Balanced processing power vs. bandwidth

Bandwidth is amplified by compression
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Multisample Antialiasing

Transparent to the application
2 & 4 subsamples per pixel
2, 4, 5, and 9-tap reconstruction filters
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Intuitive user interface
Easy set-up
Application Management
Multi Desktop Support

Flexible display combinations
+

+

+

+

+

Window Management
Window Effects
Custom User Profiles

nView Display Technology
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Framebuffer Controller

128-pin DDR
Schedules requests from all engines
Transparent compress/decompress
Maps from pixel-linear address to 
page & partition tiling
Flexible in:

Width
Depth
Frequency
Banks
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Statistics

136M vertices per second
60M triangles per second
4.8G samples/sec
1.2T ops/sec
83.2 GB/sec clear BW
63M transistors
TSMC 0.15u
300 MHz pipeline / 325 MHz memory clk
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Conclusions
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Questions



33

Related reading

Stanford special topics course Real-Time Graphics Architectures
with Kurt Akeley & Pat Hanrahan

Reading list:
http://graphics.stanford.edu/courses/cs448a-01-fall/readings.html


