
 : Power and
Performance Evaluation of a

Programmable Pipelined Datapath

Benjamin A. Levine and Herman H. Schmit

Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA USA 15213

blevine@cmu.edu, herman@ece.cmu.edu

Reconfi gurable
Computin g

Device

Reconfi gurable Computin g
Device

=

=
A Computing Device which can be
reconfigured for each different
application that it runs, by changing the
functionality of its hardware and the
way that its hardware is connected.

was developed by students and
faculty at Carne gie Mellon.

Why Reconfi gurable
Computin g?

PERFORMANCE

ADAPTABILITY

ASIC CPUDSP

RECONFIGURABLE COMPUTING

0RUH�'HVLJQ�(IIRUW

FPGA

We want performance and adaptability:
– Performance of an ASIC

Implement application as custom datapath to:
• Increase parallelism.
• Decrease memory traffic (through locality).
• Increase performance.
• Use less power.

– Adaptability of a CPU.

Completely reprogram as needed for new
applications.

Why Reconfi gurable
Computin g?

Why NOT Reconfi gurable
Computin g?

• FPGA design is more like HW than SW
– No real C to FPGA yet, so must use HDL

• FPGA configuration is fixed to one FPGA
– Must redesign to gain performance on larger FPGAs
– Can't use design on FPGA with fewer resources.
– Compares poorly to SW for microprocessors:

• No portability
• No scalability

Solution:
Use A Virtual Architecture

$SS $UFKLWHFWXUH
&RPSLODWLRQ

([HFXWLRQ

'LIIHUHQW�
�7HFKQRORJ\
���
�3HUIRUPDQFH

&RPSLOH�21&(� 5XQ�(YHU\ZKHUH�

7KURXJK�8OWUD�KLJK�
VSHHG�UHFRQILJXUDWLRQ�

Virtual Architecture
• Compile to virtual machine

– Makes compilation easier

– Compile from high-level language (DIL)
– Binaries decoupled from specific hardware

– Scalable / Re-usable

• Restrict the model of computation to
pipelined datapaths
– Makes virtual architecture possible

– Simplifies compilation and programming

Pipelined Datapaths
for (i=0; i<maxIn; i++)

{

y[i]=0;

for (j=0; j<Taps; j++)

{

y[i] += x[i+j]*w[j];

}

}

Yout

*W0

*W1 +

*W2 +

Xin
1

2

3

4

5

6

7

8

Xin

Yout

/RWV�RI�DSSV�ILW�
� '63
� ,PDJH�3URFHVVLQJ
� &U\SWRJUDSK\

3(�� 3(�� 3(�� 3(�

,QWHUFRQQHFW

3(�� 3(�� 3(�� 3(�

,QWHUFRQQHFW

3(�� 3(�� 3(�� 3(�

,QWHUFRQQHFW

Fabric
3(�� 3(�� 3(�� 3(�

,QWHUFRQQHFW

$�SURJUDPPDEOH��SLSHOLQHG
GDWD�SDWK�FRQWDLQLQJ�

3URFHVVLQJ�HOHPHQWV
/RFDO�LQWHUFRQQHFW
3DVV�5HJLVWHUV�
8QERXQGHG�'HSWK

3(�� 3(�� 3(�� 3(�

,QWHUFRQQHFW

Pipeline Virtualization

Virtual Pipeline

Pipeline Virtualization

11

2

1

2 32 3

4

Since stripes are connected in a ring, data can
always pass between adjacent virtual stripes in the
physical fabric.

5

3

4

Performance Scalin g

2 Stripes
2 Outputs / 6 Cycles

4 Stripes
4 Outputs / 6 Cycles

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

3(
��

3(
��

3(
��

3(
�

,QWHUFRQQHFW

6 Stripes
6 Outputs / 6 Cycles

Real
Device

Chip Structure

• Ring Structure
– Interleaved

• Global Buses
– Inputs
– Outputs
– Configuration
– State Storage

• 16 Stripes
– 16 PEs each

Stripe 1

Stripe 15

Stripe 8

Stripe 7

Stripe 0PE PE PEPE

Pass Register File
Connections

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

Configuration Store

R0 State Store

Input Queue

Output Queue

..

.
..
.

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses
T

o
&

 F
ro

m
ot

he
r

P
E

s
T

o
P

E
n+

1
T

o
P

E
n+

1

F
ro

m
 P

E
n-

1
T

o
P

E
n+

1

A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

Eight-bit
Buses

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses
T

o
&

 F
ro

m
ot

he
r

P
E

s
T

o
P

E
n+

1
T

o
P

E
n+

1

F
ro

m
 P

E
n-

1
T

o
P

E
n+

1

A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

Crossbar
Interconnect

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses
T

o
&

 F
ro

m
ot

he
r

P
E

s
T

o
P

E
n+

1
T

o
P

E
n+

1

F
ro

m
 P

E
n-

1
T

o
P

E
n+

1

A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

Flexible, Cascadable
Shifters

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses
T

o
&

 F
ro

m
ot

he
r

P
E

s
T

o
P

E
n+

1
T

o
P

E
n+

1

F
ro

m
 P

E
n-

1
T

o
P

E
n+

1

A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

Eight-bit
Cascadable
Functional Units

Functional Unit Architecture

3-LUT

carry
enable

3-LUT

carry
enable

...

A B

Z
er

o
/ C

ar
ry

 /
X

In
te

rc
on

ne
ct

F
ro

m
 P

E
n-

1

T
o

P
E

n+
1

Xout

Cout

Zout

Functional Unit Output (8-bts)

8

Bit 7 Bit 0Bit 6-1

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses
T

o
&

 F
ro

m
ot

he
r

P
E

s
T

o
P

E
n+

1
T

o
P

E
n+

1

F
ro

m
 P

E
n-

1
T

o
P

E
n+

1

A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

S
ta

te
 R

es
to

re
 B

us

G
lo

ba
l O

ut
pu

t B
us

S
ta

te
 S

to
re

 B
us

Pass Register File

FU

Pass Register File
• Two values can be read in each stripe.
• PE can write one new value

to a single register.
• Otherwise: each register writes

value from previous stripe.

From Previous Stripe

To Next Stripe

Crossbar

2

1

3

4

5

FU

FU

FU

FU

FU

1

2

3

4

5

Pass Register File Operation

last use

last use

Pass Register Problem

Old register values cycle through fabric endlessly.
Extra switching consumes power.

Solution: Re gister Kill

FU

From Previous Stripe

To Next Stripe

Crossbar

Configuration word
Configuration bits control
which registers are read….

Solution: Re gister Kill

FU

From Previous Stripe

To Next Stripe

Crossbar

Configuration word
Configuration bits control
which registers are read….

Solution: Re gister Kill

FU

From Previous Stripe

To Next Stripe

Crossbar

Configuration word

…and which are "killed" by
clearing the register.

Last use for
variable in

this register

…they can also control
which registers are passed…

Variable in
this register
used later.

Solution: Re gister Kill

FU

From Previous Stripe

To Next Stripe

Crossbar

Configuration word

"Last use" bit controls whether
read register are killed or passed

This requires only two
more bits per PE and
minimal additional HW.

Implemented Hardware Desi gn

• Industrial Partner: ST Microelectronics

• Process Technology: 0.18 micron, 6 metal

3.65 million transistors
49 sq. mm die
120 MHz fabric operation
60 MHz I/O frequency
< 3W power
Reconfigure entire fabric in 133ns.
Switch applications in 8ns.

Tile Layout

Register
File

Bus Drivers

MUXes
&

Shifters

ALU

Fabric Layout

Chip Die Shot

Performance on Filterin g

• 40 Tap 16-bit FIR Filter
– 41.8 MSPS

• Comparable to high-end DSPs
– Much lower clock rate
– Without a full multiplier

 (taps are compiled into hardware)

Performance on Encryption

• IDEA Encryption: 450 Mbps
– Key is compiled into hardware

– Compilation (including P&R) takes less
than one minute

• Comparison:
– 800 MHz Pentium III Xenon: 75.4 Mbps

Power Consumption – FIR Filter

• Before 14 taps, near constant power
• At 14 taps, virtualization causes step

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

Filter Taps

P
ow

er
 (m

W
)

Conclusions

• A practical virtual machine for pipelined
programmable datapaths is possible.

• Virtual hardware ⇒ physical hardware:
– Completely self-managed on chip at run-time.
– Enabled by fast incremental reconfiguration.

• Virtual architecture allows:
– Easier compilation
– Forward compatibility / Scalability

• Implemented chip has high performance and
low power requirements

