How a processor can permute
n bits in O(1) cycles

Ruby Lee,
Zhijie Shi, Xiao Yang

Princeton Architecture Lab for Multimedia and Security
(PALMS)

Department of Electrical Engineering
Princeton University

Computing Landscape

transaction server __~ watch-phone

Cell-phone

TV

wall-display

printer

< palmtop
notebookPC

storage
server

compute

server ~game-machine

Motivation

e Secure information processing increases in
importance in interconnected world

o \Word-oriented microprocessors today can handle
cryptography algorithms well, except for:

— Bit-level permutations
— Multi-word arithmetic
e The larger architectural question:

— Can a word-oriented processor handle
complex bit-level operations within the word
efficiently?

Doing an n-bit Permutation with
RISC ISA takes O(n) Instructions

X Rs

Shift to generate mask for each bit

0 o[1lool
AND source with mask

0 nan i O X O nan e 0 4 Instrs
SHIFT to desired position > for |

00/xlo0 .. o | | €ach bit
OR with previous result

X th

Generate new mask and continue with next bit

Doing A Fixed Permutation by Table

(=
Lol

Lookup
8 8 8 o EXTRACT 8-bit index
/o LOAD P1
> P1
EXTRACT next 8-bit
index
LOAD P2
255
8 tables,

each table has
256 64-bit entries

64

P8

EXTRACT last 8-bit
index

LOAD P8

P1 OR P2 OR ... OR
P8

Today - microprocessor or ASIC

e Logic Operations
— MASK-Gen/AND/SHIFT/OR - 4n instructions
— EXTRACT/DEPOSIT - 2n instructions
e Table lookup
— small set of fixed permutations only
— 8x2KB tables, about 32 instructions for 64 bits permutation
e Subword permutation instructions for multimedia
— Works on 8-bit or larger subwords
o ASIC
— permutation very fast in hardware, BUT
— small set of fixed permutations only

Goal: add new Permutation
Functional Unit to Processor

Achieve any one of n! permutations in log(n) instructions

Source to be permuted

Register . 4 l

N> =

; v v
—>
File ALU Shifter) Permutation
Configuration FU
bits

Intermediate lresult

N,

/

(=

Initial Problem Definition A~

o Efficient bit permutation instructions for arbitrary
permutations of n bits

— Focus on n = 32 or 64 (word sizes)

— Standard instruction format and datapaths
e 2 reads, 1 write per instruction
e No extra state (to save and restore)
e Single cycle, simple hardware
—in log(n) instructions - optimal
o Number of different n-bit permutation = n!
log(n!) =nlog(n) (n>0)

e nlog(n) bits needed to specify an arbitrary permutation

Outline

e Permute n bits: from O(n) to O(log(n))
instructions

— ISA definitions

— Chip/Circuit Implementations

— Performance, Cycletime, Versatility
e Permute n bits: from O(log(n)) to O(1) cycles
e Conclusion

(=

Alternative permutation methods

e to reduce O(n) to O(log n) instructions for
achieving any one of n! permutations

e Partitioning
— GRP

e Building “virtual” interconnection networks
— CROSS (log(n) types of stages)
— OMFLIP (2 types of stages)

e Select source bit by its numeric index
— PPERM
— SWPERM and SIEVE

Data

Control

Result

8-bit GRP operation

GRP Rs, Rc, Rd

0

RS alblc|d]| e

RC 110011

Rd blc|f|h]a

GRP64 Implementation

64 data bits and 64 inverted

64 data %s\and 64 control bits control bitiii reverse order
it
I i LI N e 1L 1 2:1bit - 2bits
...... i¢i¢$¢¢¢

...

64 OR gates

v

output

{

ol

AT

.. E.&Eéﬁ SaEdians
m ﬁl- P———

p— UL T L

i 1. -

t (GRP)

Un

LEERELTEERRET

bl LA T i
B LT

on

e | T -—— - .II.|| e e el 8 R il e

-- _..w%.,._m ..M AP -ﬂ .--.._-———-._ii an -u-l-—l:l.llll ...r._.1 |

th Permutat

Ip Wi

Ch

8-bit CROSS instruction

[0 building a virtual Benes Network

> Butterfly
network

Inverse
> butterfly
network

perform any 2 butterfly
stages in one instruction

Performs any n-bit
permutation with 2log(n)
stages

log(n) different types of
stages

e Scalable for subword

permutation
Shortest latency

8-bit OMFLIP

O building a virtual Omega-Flip Network

Omega
network

Flip
network

=
A

perform 2 omega or flip
stages in one instruction

Performs any n-bit
permutation with 2log(n)
stages

Only 2 different types of
stages

Scalable for subword
permutation

Smallest area for a
permutation unit

An OMFLIP Implementation

e To implement any 2 combinations of 64 bits
Omega or Flip stages, it is enough P
to implement a circuit with only 4
stages, 2 omega stages, 2 flip
stages

e This allows 00, FF, OF and FO
combinations

o QOther circuit organizations also
possible, e.qg., O-F-O-F, F-O-F-O and
F-0-0O-F

bypassing connections

64 permuted bits

Chip with Permutation Unit x
(OMFLIP)

Comparison

Maximum Number of Instructions

Required for Any Permutation

n/k elements,
each k-bit

Current| Table OMFLIP
ISA | lookup GRP or
CROSS
Bit permutation,
n elements, O(n) O(n) log(n) log(n)
each 1-bit
Subword
permutation, | o0 iy | o) | log(n/k) | log(n/k)

Speedup of DES

N
(0]

2.24
2.14

O Table Look-Up
GRP
OMFLIP or CROSS

For key generation,
speedup is 11x-16X |

cache 1 cache 2

Cache 1: one-level cache, 16KB (50 cycles miss penalty).

Cache 2: two-level cache, L1: 16KB (10 cycles miss penalty),
L2: 256KB (50 cycles)

Speedup for sorting 64 elements
using GRP instruction

Subword size 4 bits 8 bits 16 bhits
vS. Bubble sort 408.3 128.9 43.7
vS. Selection sort 272.7 86.1 29.2

vS. Quick sort 94.4 29.8 10.1

Demonstrates versatility of GRP instructions
for sorting as well as permutations.

How to execute log(n) instructions

in O(1) cycles?

Instruction sequence to
permute 64 bits:

OVFLI P, oo
OVFLI P, oo
OVFLI P, oo
OVFLI P, ff
OVFLI P, f f
OVFLI P, f f

Rl, R2, R10

R10, R3, R10
R10, R4, R10
R10, R5, R10
R10, R6, R10
R10, R/, R10

(=
Lol

RISC ISA constraint of
instructions with only 2
operands

n-bit permutation needs
1+log(n) operands

Supplying these operands
results in register data
dependencies

But 7 operands could be
supplied in 4 RISC
instructions rather than
6?

2-way Superscalar with a

(4,2) Data-rich Functional Unit

from memory

l

L

7-port register file

"""""""""""""""

Leverage microarchitecture features
In 2-way superscalar processors

Original instruction
sequence to permute 64

bits:

OVFLI P, oo
OVFLI P, oo
OVFLI P, oo
OVFLI P, f f
OVFLI P, f f
OVFLI P, ff

Rl, R2, R10

R10, R3, R10
R10, R4, R10
R10, R5, R10
R10, R6, R10
R10, R/, R10

(=
Lol

e Enable "Data-rich”
functional units utilizing
existing parallel register
ports and data buses

e Replace 6 instructions with
4 (ISA or microarchitecture)

OVFLI P, o0 R1, RZ2, R10

OMVcont R4 R3, R10
OVFLI P, ff R10, R5, R10
OMcont R/, R6, R10

Two (4,1) functional units, each log(n) stages =
(Butterfly is faster than Omega-flip) N

5 2 2R 2R

6 types of Butter fly stages Butterfly
steges network (BFLY)

v l

* 64 permuted bits

2log(n)=12 stages
n=64
bits

T

Inverse butterfly
network (IBFLY)

Vo

64 permuted bits

Performing any permutation of n bits
with 2 cycles latency, 1 cycle thruput

Consider n=64 bits
Implement 2 permutation functional units, each with
log(n) stages
— e.qg., 6-stage Butterfly network,
6-stage InverseButterfly network

Use Data-rich (4,1) functional unit leveraging datapaths
of 2-way superscalar microarchitecture

— Replace former log(n)=6 instructions by 4 instructions
via ISA or microarchitecture

Execute these 4 instructions, two at a time
— 2 cycles latency but 1 cycle thruput

Can achieve any one of n! permutations at the rate of
one per cycle

— different permutation possible every cycle

(=

Conclusions A~

e Very fast, easily implementable, general-purpose
permutation instructions for any processor
— Radical speedup: from O(n) to O(log n) instructions
— Latest result: down to O(1) cycles !!
— Can achieve any one of n! permutations at the rate of

one per cycle

o Important applications: accelerates both secure
and multimedia information processing
— single-bit and multi-bit subword permutations
— big speedup in current algorithms, e.g., DES
— opens field for faster, “more secure” new algorithms
— versatile, multi-purpose primitives, e.g., for sorting

o Validates basic word-orientation of processors
even for complex bit operations within a word

Backup Slides

Performance on a 2-way

superscalar processor

Method to perform 64-bit Max # of | # of cydes| Cydetime
permutation instructions in FO4
Existing ISA’s 128* or 256 34" 14-15
basic ALU
Table Lookups 23 10 -
(small set of permutations)
2-stage omflip 6 6 13.6
6-stage BFLY and 6-stage BIFLY 40r6 2 0.6
(thruput 1)

* With EXTRACT and DEPOSIT instructions

Confusion and Diffusion Techniques in
Symmetric Key Cryptography

=
A

e Confusion - obscure the relationship between the
plain-text/key and the cipher-text

— S-box (nhon-linear substitution)
— Addition and multiplication

e Diffusion - dissipate the redundancy of plain-text
by spreading it out over the cipher-text

— Permutation
— Rotation

