

20Gb/s 0.13um CMOS Serial Link

Patrick Chiang (pchiang@stanford.edu) Bill Dally (billd@csl.stanford.edu) Ming-Ju Edward Lee (ed@velio.com) Computer Systems Laboratory Stanford University

Outline

- Motivation
- Background
 - Static phase offset
 - Random/power supply induced jitter
- Proposed 20Gb/s transceiver
 - New Architecture
 - Circuit Blocks
 - Receiver Design
 - Preliminary Results
- Conclusion

I/O Bandwidth is Limiting Factor

• Predicted Off-Chip Bandwidth growing slower than On-Chip

Higher bit rate I/O's needed to close this gap

20Gb/s 0.13um CMOS Transceiver Goals

- Systematic/static phase offset
- Random/power supply induced jitter
- Not addressing channel equalization
- Reasonable power dissipation(200mW/link)
- Small area footprint(500um x 500um) for high integration on single chip

Outline

- Motivation
- Background
 - Static phase offset
 - Random/power supply induced jitter
- Proposed 20Gb/s transceiver
 - New Architecture
 - Circuit Blocks
 - Receiver Design
 - Preliminary Results
- Conclusion

Static Phase Offset—Ideal Transceiver

Timing Margin=12ps

Timing Margin=7ps 42% reduction

Power Supply Induced Jitter

20Gb/s Transmitter Design Spaces

Outline

- Motivation
- Background
 - Static phase offset
 - Random/power supply induced jitter
- Proposed 20Gb/s transceiver
 - New Architecture
 - Circuit Blocks
 - Receiver Design
 - Preliminary Results
- Conclusion

New Architecture

New Architecture Reduces Jitter/Phase Offset

20Gb/s Transmitter

20Gb/s Output Stage

10GHz Analog Latch

- Full pass gates provide symmetric clock injection
- Gain loss of ½ from 10Gb/s input to output

4:1 10Gb/s Mux Design

10GHz Clock Alignment Problem

• How do you ensure 10Gb/s data is in phase with 10Ghz clock?

Phase Adjusting FSM

• Align zero crossings of 10GHz clock and 8 multi-phases of 2.5GHz Clock

Transmitter Outline

Phase Interpolator

10GHz LC Oscillator

- Use passive L,C elements for frequency synthesis
 - 10x less jitter/power supply sensitivity than ring oscillator VCO's
 - Significantly less static phase offset
 - Higher frequency of oscillation
- Disadvantage--area is significantly larger than conventional techniques
 - Area disadvantage mitigated by higher frequency--inductor size reduces by factor of 4 for 2x increase in frequency
 - A 130um x 130um 1nH inductor deemed reasonable area / per IO
- Tuning range given by inversion mode PMOS capacitors

< 3ps pk-pk jitter--2000 cycles, with 20mV wideband Vdd noise

Receiver Design

- Clock recovery done at reset time
 - Sampling clock swept across entire bit period at reset time
 - Bit error is measured for sampling instances, and optimum sampling time chosen at startup
 - Periodic retraining of receiver to compensate for slowly varying timing drift

Simulated Results

Simulated 20Gb/s Output, with Clean Supply

Data Rate	20Gb/s
Process	1.2V, 0.13um Generic CMOS
Power	200mW(transmitter & receiver) (PLL=20mW)
Estimated Area	500um x 500um
Pk-Pk Jitter	< 10ps, with 20mV Vdd Noise
Output Swing	100mV
Input Receiver Sensitivity	40mV
Tuning Range	10ps (10%)

1.54

1.10

1.34

137

1.1

• A 20Gb/s CMOS I/O Link has been designed

 Low Power, Low Area enable high integration of these 20Gb/s I/O pads on a single chip

Acknowledgements

- Velio Communications—Ramesh Senthinathan, Mark Kellam, John Poulton
- Jaeha Kim, Mark Horowitz, Niranjan Talwalkar for discussion

BW Numbers

	1999	2000	2001	2002	2003	2004	2005
# of pins	1600	1792	2007	2248	2518	2820	3158
I/O bw/pin	1.92E+09	2.77E+09	3.20E+09	3.50E+09	3.70E+09	4.00E+09	4.07E+09
total I/O bw	1.54E+12	2.77E+12	3.21E+12	3.94E+12	4.66E+12	5.64E+12	6.43E+12
on-chip bw/wire	1.20E+09	1.40E+09	1.60E+09	1.72E+09	1.86E+09	2.00E+09	2.12E+09
chip size	1.76E-02	1.76E-02	1.76E-02	1.80E-02	1.84E-02	1.89E-02	1.93E-02
minimum wiring width(161)	1.44E-06	1.44E-06	1.04E-06	1.04E-06	1.04E-06	7.20E-07	7.20E-07
# of wires	1.22E+04	1.22E+04	1.69E+04	1.73E+04	1.77E+04	2.63E+04	2.68E+04
Total on-chip BW	1.46E+13	1.71E+13	2.72E+13	2.98E+13	3.30E+13	5.30E+13	5.68E+13