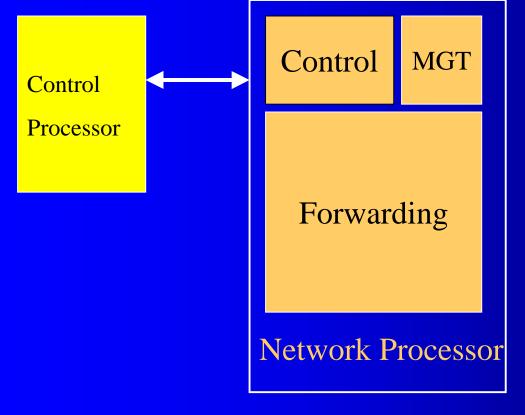
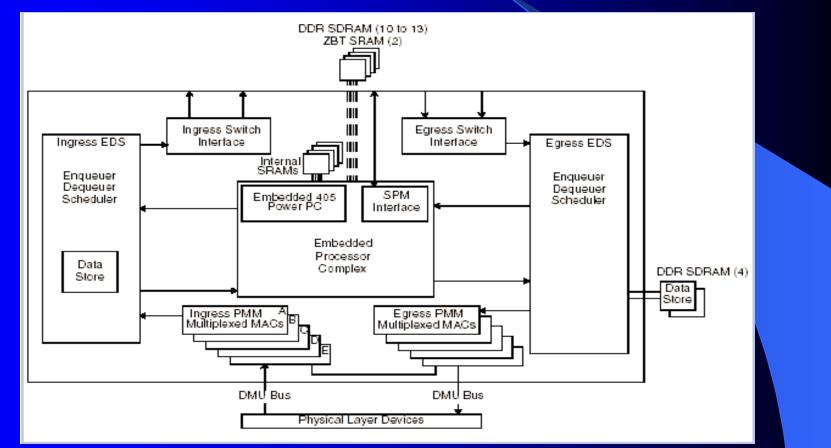
Benchmarking Network Processors: More than just MIPS

Nathan Pham Performance Engineer IBM Microelectronics



Network Processor

- Core component of network equipment (routers, switches, firewalls, web switches, etc.)
- The goal is to be to networking products what CPUs are to PCs
- Hybrid solution that provides high performance through hardware and flexibility through software programmability
- Optimized to handle packet processing


NP Functions

- Steady-state functions
 - Ex: frame storage, alteration and classification
- Control functions
 - Ex: routing and signaling
- Management functions
 - Ex: NP configuration and diagnostics

NP Architecture

Benchmark µPs vs. NPs

- NP is designed for fast packet processing, not for general applications.
- Existing computational-intensive benchmarks for CPUs are not applicable to NPs.
- Different performance metrics

NP Benchmarking Levels

System level

– Ex.: routers, firewalls, and web switches.

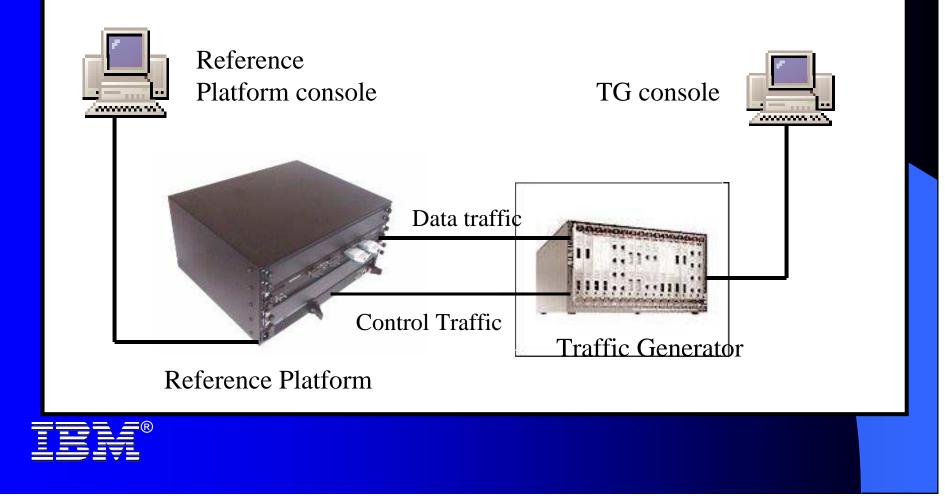
• Function level:

- Ex.: IP forwarding, MPLS forwarding, QoS, etc.
- Micro operation level:
 - Ex.: LPM table lookups, 5-tuple table lookups, and CRC calculations.
- Hardware operation level:
 - Ex.: throughput/latency for accesses to memory.

Benchmark Requirements

Architecture independent
 Specific to the NP application domain of interest
 Meaningful performance metrics

Realistic test environment



IPv4 forwarding function level benchmark

Basic IPv4 forwarding function
Developed by Network Processing Forum (NPF) benchmark working group
Members: Over 80 companies including IBM, Intel, Agere, EZ Chip, Vitesse, etc.
Other benchmarks: IPv6, MPLS, and DiffServ

IPv4 Forwarding Benchmark Setup

IPv4 Forwarding Benchmark Metrics – Forwarding Rate

- Max rate that frames can be forwarded
- Traffic sent to NP at max line rate
- Influencing factors:
 - Packet processing time
 - Packet rate
 - Queuing mechanism (queue size, discard mechanism)
- Reporting numbers
 - Frame rate: in Million packets per second (Mpps)
 - Bit rate: in Gigabit per second (Gbps)
 - -__Percent of line rate

Metrics – Throughput Rate

- Max rate that frames can be forwarded with no frame loss
- Cannot always derive from forwarding rate
- Influencing factors:
 - Packet processing time
 - Packet rate
 - Queuing mechanism (queue size, discard mechanism)
- Reporting numbers
 - Frame rate: in Million packets per second (Mpps)
 - Bit rate: in Gigabit per second (Gbps)
 - Percent of line rate

Metrics – Latency

- Time needed to process and forward a data frame
- Sources of latency
 - Queuing delay
 - Processing time
 - Frame movement internal to NP
 - Stall time
- Influencing factors
 - Data rate
 - Frame size
 - Queuing mechanism (queue size, discard mechanism)
 - Software efficiency
 - Resources utilization efficiency

Metrics – Loss rate

- Percent of incoming data frames dropped by NP
- Not simply the reverse of throughput rate
- Two thresholds
 - Max line rate
 - Throughput rate
- Shows NP forwarding behavior between thresholds

Metrics – Overload forwarding rate

- Forwarding rate in extremely congested scenario
- Data frames sent at much higher than max line rate.
- Influencing factors
 - Queue size
 - Discard mechanism
 - Flow control
 - Processing time
- Shows NP forwarding behavior in stressed condition

Metrics – Forwarding table update rate

- Most important control function for IPv4
- Max rate at which forwarding table entries can be added, updated, or deleted
- Influencing factors:
 - Control Point (CP) processor power
 - Communication channel b/t NP and CP
 - Control action processing time
- Implementation details
 - Routing protocol
 - API calls
 - Simulated packets

Metrics – Headroom

- Excess processing power left over while concurrently keeping up with data traffic at throughput rate
- Simulate real world usage of NP
- Data and control traffic sent concurrently
- Measured by route updates/second
- Influencing factors:
 - NP processing power
 - Priority mechanism (b/t control and data traffic)

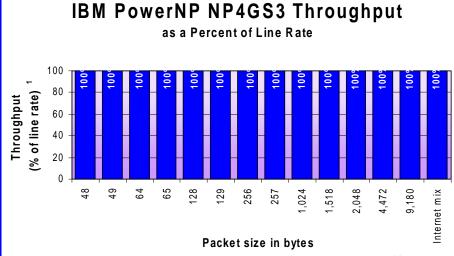
IPv4 Forwarding Benchmark Parameters

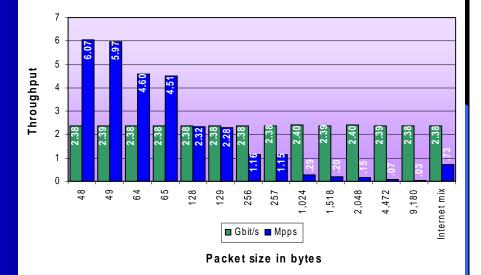
- Routing table
 - LPM Table lookup time ~ processing time
 - Table size and structure
- Frame size
 - Smaller frame size ~ higher packet rate
 - Real world traffic profile
- IPv4 forwarding operation
 - Vanilla IPv4 forwarding
 - IPv4 with option/control
- Traffic mapping
- Run time

Benchmark Requirements Check

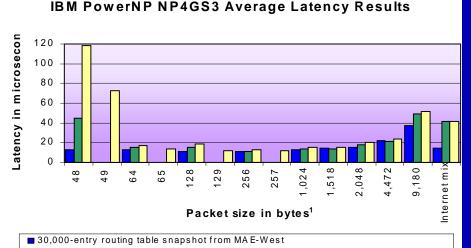
Requirements	IPv4 forwarding benchmark
Architecture independent	Yes
Specific to application domain	Yes
Meaningful metrics	Yes
Realistic test environment	Yes

IBM PowerNP NP4GS3




- 16 programmable picoprocessors provide 2128 MIPS aggregate processing capability
- Embedded PowerPC processor included
- Hardware accelerators
- Multi-threading supported
- 40 Fast Ethernet/4-Gb MACs/OC-48c/OC-48/four OC-12/sixteen OC-3
- Up to 64 NPs can be connected via switch fabric

IBM PowerNP NP4GS3 Performance


¹Throughput results are consistent across three test scenarios in w hich engineers measured NP4SG3 performance in a scenario w ith a 30,000-entry snapshot of a sample routing table derived from MAE-West, from a synthetic 100,000-entry routing table, and from the synthetic 100,000-entry routing table w hile it handled over 5,000 updates per second.

IBM PowerNP NP4GS3 Throughput Gigabits-per-Second and Packets-per-Second Rates

NP4GS3 Performance

- Synthetic routing table with 100,000 entries
- Synthetic routing table w ith 100,000 entries, plus over 5,000 route updates per second

 $^1Non-standard$ frame sizes (49, 65, 129, 257 bytes) were tested only under the most stressful routing table scenario – the synthetic 100,000-entry routing table with over 5,000 concurrent route updates.

- Delivers OC-48c wire-speed performance
- Maintains line rate with a 30,000-entry real-world routing table
- Maintains line rate with a 100,000-entry synthetic routing table
- Maintains line rate with 100,000-entry synthetic routing table while concurrently handling 7,300 routing table updates per second
- Maintains low latency in all scenarios

Summary

- Network Processor is a new and important component of modern network equipments
- Four levels of performance benchmarking the NP: system, function, micro operation, and hardware
- Benchmark should be developed based on the application NPs are used for
- IBM PowerNP NP4GS3 delivers an industry-first verified single-chip solution that can handle OC-48c IPv4 packet processing at line rate.

Further information

IBM Microelectronics: <u>http://www.chips.ibm.com</u>

- PowerNP NP4GS3 network processor specs, documentation, etc.
- Tolly Group report on IBM PowerNP4GS3 performance
- NP4GS3 MDR's processor of the year award
- Network Processing Forum <u>http://www.npforum.org</u>

