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High Energy Physics

e Study of fundamental constituents of matter and
forces between them

» quarks, electrons, neutrinos, photon, Z 9, W#, etc.

— Higher and higher energies are required to delve deeper and
deeper into matter

 I.e. larger, more powerful, more expensive

— No longer affordable by individual countries



CERN

Conseil-Europeen pour la Recherche Nucleaire
— | located in Geneva area Switzerland

— high energy and nuclear physics research center

Established in 1954
» “Kickstart”. research-in Europe

Currently funded by 20 European Countries

Users: ~6500 scientists from 500 “Institutes in ~80 countries

Next main research program:

Large Hadron Collider

— Start of operation:: 2005, data taking ~20 years

Member state

Participating non member state



Large Hadron Collider & The Alps

4 Interaction points

~100m deep

/7 TeVp- —p
5.5 TeVPb- —Pb

Superconducting accelerator

27km circumference




Nucleons In Collision

« 8000 collisions per second

Pb * Each interaction generating

~ speed of light >24 000 particles in acceptance
of detector

« Task: Find within one specific
particle pair within 6 us out of
16 000 charged particles
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«— * digitize 1.2 million data
~ speed of light channels @ 10 MHz/10 Bit

e process 29 Mbytes

« form global decision

Main goal is to create the Quark-Gluon Plasma,
A state of matter existing during the first few microseconds after the big bang



A Particle Detector named ALICE

e ITS: 2.62 million channels (1 Bit)

« TPC: 570 000 channels (10 Bit)

- TRD: 1.2 million channels (10 Bit)
* 1,425 million ADCs

Digitization rate: 10 MHz/10 Bit

Peak data rate: 17,8 TB/sec
75 000 MIMD processors

Computing time of 6 us

Target clock rate: 120 MHz

Measures particle trajectories, momentum and provides particle identification

Magnet (0,4 Tesla)

F. Lesser, www.ti.uni-hd.de 6



TRD Electronics Overview

to/from next MCM
(right within padrow)

4 + 1.2 million analog channels @ 10 MHz
» 16 channels per module

» 75000 sources -> 1 trigger bit

* track segment processing on chamber
* maximum latency 6us

» ~20 space points per tracklet

* 4-6 tracklets (layers) per track
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Detector :

to/from next MCM
(left within padrow)
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Tracklet Fit Concept
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TRD Trigger Timing and Data Flow

Data reduction <29 MByte 4,35 MByte 1,14 MByte [86.4 kByte (D
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« Highly I/O bound: 17.8 TB/sec
* Very tight time budget: 1.8+ 1.5 us
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Next Step: Compute and Combine
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Computer Architecture Trends
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why MIMD with Shared Memory?

1.5 us computing time @ 120 MHz = 180 clock cycles

« ~120 clock cycles required to finish one task

* Four tasks have to be done = ~ 480 cycles needed

» The processor must execute up to four tasks on different data objects
« Arithmetic operations should be executed in one clock cycle

e Data has to be shared without overhead =
— Quad Ported SRAM (QPM)
— Global Register File (GRF)

e Four tasks = Four CPUs
e Same code = Quad port instruction memory saves chip area

* MIMD



Generic Processor Architecture

Instruction
Sequencer
Source Bus
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 To execute up to four tasks in real time, four CPUs are needed
* Independent CPUs can't share data or program
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MIMD Architecture

Shared I-Mem

=

Instruction
Sequencer

Source Data Bus

Projection of Pre-Processor
data inside the MIMD

Vrite Back Data Bus

* Four Harvard CPUs coupled by Four ALUs
« multi port instruction memory
* multi port data memory
» Global Register File (GRF)
 Register based interface to Pre-Processor
» Two stage pipeline (fetch/decode, execute/write back)
* Architecture can be adopted to any general purpose processor
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Some Features

* 16 Bit data word

* 16 private registers per node

* 16 global registers common to all nodes
24 Kbytes quad port



Instruction Set and Format

« 24 Bit fixed length instruction word

* 70 instructions in total
— 22 ALU instructions
— 26 branch instructions
— 3 instructions for synchronization
— 14 Load/Store instructions
— 4 instructions to handle interrupts

23
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1110
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4

0

Opcode Source 1 Source 2 Destination
17 14 1110 5 4 0
Opcode Immediate | Source 2 Destination
1716 5 4 0
Opcode Immediate Destination
1716 1110 0
Opcode Source 1 Immediate
1716 4 3 0
Opcode Immediate Branch
1716 11 3 0
Opcode Source 1 Branch
17 15 0
Opcode Immediate
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Quad Port Memory

Write data

Clock J |

Write Data —< > ; i
Address :>< >< >< ><

Word lines —\ / \ / \ / \ / \
Bit lines _/ \ /\ / \_/ \_/

Addresses WE

Bit cells

Read Data }—@C:/\ Q O

D AP

Read data
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A Closer Look Inside the MPM

* Full custom design used for quad port
16 bit data memory and 24 bit
instruction memory

* Delivers/receives data to/from 4 CPUs
simultaneously

 Max. access time is about 2 ns
(0.18 pm)

 Needed access time 6 ns

* Organized in blocks of 64 lines

* Line width is parametrizable

Precharge

VVVVY _VVYVY

——fillll Illl

Bitline1-4Not _bitlinel

ey

ﬁ 1 Bit

VVVV _VVYVY

Senseamplifiers

oYy

Doutl Dout2 Dout3 Dout4

Four blocks of the MPM with additional test logic in 0.35 um process
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Synchronization

* Three instructions for
synchronization

— SEMsets the synchronization
mask

— SYNsuspend the PC

— SYT copies the synchronization
register

» Implementation of flexible
synchronization patterns

* Synchronization implemented as
a side effect of access to the GRF
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Synchronization Register

Write !

AN || | e

Synchronization Register

EEEEEEN [ [ e

Synchronization Register

Assigned to CPU 1

—  \Wite

Assigned to CPU 2

Assigned to CPU 3

Assigned to CPU 4

20



Data I/O

Global I/O

Addr

Data

\

B

Private 1/0

e

Private 1/0

%
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Private 1/10

Private 1/0

Fit Register File

Direct input from preprocessor
via multi ported registers

Private I/O to external links
System bus for peripheries

Arbiter to select a CPU
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Summary

* High Energy Physics presents very interesting challenges in the
computer science (high throughput, low latency, low overhead,
massively parallel processing)

e Use of Multi Ported Memories (MPM) enables integration of
multiple generic processor cores as MIMD unit

« MPM as global register file allows zero overhead,
asynchronous multi processor communication (semaphores,
locks, etc.)

« MPM operating as butfer memory provides scalable,
independent access to shared data structures

« MPM operating as buffered crossbar switch allows tight
integration of I/O for network and I/O processors

e For further information contact www.ti.uni-hd.de

US/PCT Patend Pending: 6,067,595
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