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High Energy Physics

� Study of fundamental constituents of matter and 
forces between them

» quarks, electrons, neutrinos, photon, Z 0, W±, etc.

– Higher and higher energies are required to delve deeper and 
deeper into matter

� i.e. larger, more powerful, more expensive
– No longer affordable by individual countries
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CERN

� Conseil Europeen pour la Recherche Nucleaire

– located in Geneva area Switzerland

– high energy and nuclear physics research center

� Established in 1954

» “kickstart” research in Europe

� Currently funded by 20 European Countries
� Users: ~6500 scientists from 500 institutes in ~80 countries

� Next main research program: 

Large Hadron Collider

– Start of operation: 2005, data taking ~20 years

Member state

Participating non member state
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Large Hadron Collider & The Alps

27km circumference

~100m deep

4 Interaction points

Superconducting accelerator
7 TeV p→←p

5.5 TeV Pb→←Pb

Geneva International airport
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Nucleons In Collision

Pb

Pb

~ speed of light

~ speed of light

� 8000 collisions per second

� Each interaction generating 

>24 000 particles in acceptance 

of detector

� Task: Find within one specific 

particle pair within 6 µs out of 

16 000 charged particles 

� 6 µs to:

� digitize 1.2 million data 

channels @ 10 MHz/10 Bit

� process 29 Mbytes

� form global decision

Main goal is to create the Quark-Gluon Plasma, 

A state of matter existing during the first few microseconds after the big bang
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A Particle Detector named ALICE

� ITS: 2.62 million channels (1 Bit)

� TPC: 570 000 channels (10 Bit)

� TRD: 1.2 million channels (10 Bit)

� 1,425 million ADCs

� Digitization rate: 10 MHz/10 Bit

� Peak data rate: 17,8 TB/sec

� 75 000 MIMD processors

� Computing time of 6 µs

� Target clock rate: 120 MHz

Magnet (0,4 Tesla)

Measures particle trajectories, momentum and provides particle identification
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TRD Electronics Overview

Detector :
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Tracklet Fit Concept

During Drift Time:

N = hitcount y = position

∑x = timebin sum ∑y = position sum

∑ x y = timebin*position sum

∑y 2 = position² sum

i = position

∑xi = timebin sum ∑yi = position sum

∑ xi yi = timebin*position sum
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TRD Trigger Timing and Data Flow
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relevant pipeline ADC output

Calculate Σ fit
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Calculate Tracklets

Global Tracking
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ADC pipeline latency

ADC pipeline latency

18 TByte 1,85 TByte

4,35 MByte 1,14 MByte 1 Bit29 MByte 86.4 kByteData reduction

Data bandwidth

� Highly I/O bound: 17.8 TB/sec

� Very tight time budget: 1.8 + 1.5 µs
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Next Step: Compute and Combine
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Computer Architecture Trends
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Why MIMD with Shared Memory?

� 1.5 µs computing time @ 120 MHz ⇒ 180 clock cycles

� ~120 clock cycles required to finish one task

� Four tasks have to be done ⇒ ~ 480 cycles needed

� The processor must execute up to four tasks on different data objects

� Arithmetic operations should be executed in one clock cycle

� Data has to be shared without overhead ⇒
– Quad Ported SRAM (QPM) 

– Global Register File (GRF)

� Four tasks ⇒ Four CPUs

� Same code ⇒ Quad port instruction memory saves chip area

� MIMD
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Generic Processor Architecture

� To execute up to four tasks in real time, four CPUs are needed

� Independent CPUs can't share data or program
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MIMD Architecture

� Four Harvard CPUs coupled by 

� multi port instruction memory

� multi port data memory

� Global Register File (GRF)

� Register based interface to Pre-Processor

� Two stage pipeline (fetch/decode, execute/write back)

� Architecture can be adopted to any general purpose processor

Write Back BusWrite Back BusWrite Back BusWrite Back Data Bus

PRF 1PRF 2PRF 3PRF 4
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Four ALUs
Shared data via

GRF and D-Mem

Shared I-Mem

Projection of Pre-Processor

data inside the MIMD
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Some Features

� 16 Bit data word

� 16 private registers per node

� 16 global registers common to all nodes

� 24 Kbytes quad port
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Instruction Set and Format

� 24 Bit fixed length instruction word

� 70 instructions in total
– 22 ALU instructions 

– 26 branch instructions

– 3 instructions for synchronization

– 14 Load/Store instructions

– 4 instructions to handle interrupts

Opcode Source 1 Source 2 Destination

Opcode Immediate Source 2 Destination

Opcode DestinationImmediate

Opcode Source 1 Immediate

Opcode BranchImmediate
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Quad Port Memory

Address

and WE 
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Write data 
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Address 
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Read Data
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A Closer Look Inside the MPM
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� Full custom design used for quad port 
16 bit data memory and 24 bit 
instruction memory

� Delivers/receives data to/from 4 CPUs 
simultaneously

� Max. access time is about 2 ns 
(0.18 µm)

� Needed access time 6 ns

� Organized in blocks of 64 lines 

� Line width is parametrizable  

Four blocks of the MPM with additional test logic in 0.35 µm process
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Synchronization

GRF

Assigned to CPU 2

Assigned to CPU 1

Assigned to CPU 3

Assigned to CPU 4

Write

SYN 0000 1000 0000 0000

Write '0'

Write '0'

Write '0'

Write '0'

Synchronization Register 

Synchronization Register 

Synchronization Register 

Synchronization Register 

� Three instructions for 

synchronization

– SEM sets the synchronization 

mask

– SYN suspend the PC

– SYT copies the synchronization 

register 

� Implementation of flexible 

synchronization patterns

� Synchronization implemented as 

a side effect of access to the GRF
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P1 P2 P3 PN

Global I/O

CPU 2

� Direct input from preprocessor 

via multi ported registers

� Private I/O to external links

� System bus for peripheries

� Arbiter to select a CPU

Private I/O

Private I/O

Addr Data

CPU 1CPU 3

CPU 4

Priority

Arbiter

Data I/O

Private I/O

Private I/O

Fit Register File
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Summary

� High Energy Physics presents very interesting challenges in the 
computer science (high throughput, low latency, low overhead, 
massively parallel processing)

� Use of Multi Ported Memories (MPM) enables integration of 
multiple generic processor cores as MIMD unit

� MPM as global register file allows zero overhead, 
asynchronous multi processor communication (semaphores, 
locks, etc.)

� MPM operating as buffer memory provides scalable, 
independent access to shared data structures

� MPM operating as buffered crossbar switch allows tight 
integration of I/O for network and I/O processors

� For further information contact www.ti.uni-hd.de

US/PCT Patend Pending: 6,067,595
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