A MIMD Multi Threaded Processor

Falk Lesser

V. Angelov, J. de Cuveland, V. Lindenstruth, C. Reichling, R. Schneider, M.W. Schulz Kirchhoff Institute for Physics University Heidelberg, Germany Phone: +49 6221 54 4304 Email: ti@kip.uni-heidelberg.de Email(speaker): lesser@kip.uni-heidelberg.de WWW: http://www.ti.uni-hd.de

Outline

- Introduction
- Application for the MIMD processor
- Electronics environment
- The MIMD processor architecture
- Summary

High Energy Physics

• Study of fundamental constituents of matter and forces between them

» quarks, electrons, neutrinos, photon, Z⁰, W[±], etc.

- Higher and higher energies are required to delve deeper and deeper into matter
- i.e. larger, more powerful, more expensive
 - No longer affordable by individual countries

Large Hadron Collider & The Alps

Nucleons In Collision

- 8000 collisions per second
- Each interaction generating
 >24 000 particles in acceptance of detector
- Task: Find within one specific particle pair within 6 µs out of 16 000 charged particles
- 6 µs to:
 - digitize 1.2 million data channels @ 10 MHz/10 Bit
 - process 29 Mbytes
 - form global decision

Main goal is to create the Quark-Gluon Plasma, A state of matter existing during the first few microseconds after the big bang

A Particle Detector named ALICE

- ITS: 2.62 million channels (1 Bit)
- TPC: 570 000 channels (10 Bit)
- TRD: 1.2 million channels (10 Bit)
 - 1,425 million ADCs
 - Digitization rate: 10 MHz/10 Bit
 - Peak data rate: 17,8 TB/sec
 - 75 000 MIMD processors
 - Computing time of 6 µs
 - Target clock rate: 120 MHz

Measures particle trajectories, momentum and provides particle identification

Magnet (0,4 Tesla)

TRD Electronics Overview

F. Lesser, www.ti.uni-hd.de

Tracklet Fit Concept

TRD Trigger Timing and Data Flow

- Highly I/O bound:
- Very tight time budget:

17.8 TB/sec 1.8 + 1.5 μs

Next Step: Compute and Combine

Computer Architecture Trends

Culler, Patterson, UC Berkeley

Why MIMD with Shared Memory?

- 1.5 µs computing time @ 120 MHz \Rightarrow 180 clock cycles
- \sim 120 clock cycles required to finish one task
- Four tasks have to be done $\Rightarrow \sim 480$ cycles needed
- The processor must execute up to four tasks on different data objects
- Arithmetic operations should be executed in one clock cycle
- Data has to be shared without overhead \Rightarrow
 - Quad Ported SRAM (QPM)
 - Global Register File (GRF)
- Four tasks \Rightarrow Four CPUs
- Same code \Rightarrow Quad port instruction memory saves chip area

• MIMD

Generic Processor Architecture

- To execute up to four tasks in real time, four CPUs are needed
- Independent CPUs can't share data or program

MIMD Architecture

F. Lesser, www.ti.uni-hd.de

Some Features

- 16 Bit data word
- 16 private registers per node
- 16 global registers common to all nodes
- 24 Kbytes quad port

Instruction Set and Format

- 24 Bit fixed length instruction word
- 70 instructions in total
 - 22 ALU instructions
 - 26 branch instructions
 - 3 instructions for synchronization
 - 14 Load/Store instructions
 - 4 instructions to handle interrupts

23	17	16	11	10		54			0	
	Opcode	Sour	Source 1		Source 2		De	estination	ation	
23	17	14	11	10		54			0	
	Opcode	Imm	ediate	Sour	ce 2		Destinatio			
23	17	5 4					0			
	Opcode		ediate				Destination			
23	17 16 11 10							0		
									-	
	Opcode	Sour	ce 1		Im	mec	liat	e	-	
23	Opcode 17	Sour	ce 1		Im	mec 4	liat 3	e	0	
23	Opcode 17 Opcode	Sour 16	ce 1 Imm	ediate	Im	mec 4	liat 3	e Branch	0	
23 23 23	Opcode 17 Opcode 17	Sour 16 16	ce 1 Imm 11	ediate	Im	mec 4	liat 3	e Branch	0	
23 23 23	Opcode 17 Opcode 17 Opcode 17	Sour 16 16 Sour	ce 1 Imm 11 ce 1	ediate	Im	4	liat 3 3	e Branch Branch	0	
23 23 23 23	Opcode 17 Opcode 17 Opcode 17 Opcode 17 Opcode 17 Opcode 17	Sour 16 16 Sour 15	Imm 11 ce 1		Im	4	liat 3 3	e Branch Branch		

Quad Port Memory

F. Lesser, www.ti.uni-hd.de

A Closer Look Inside the MPM

• Full custom design used for quad port 16 bit data memory and 24 bit prepower instruction memory Precharge Delivers/receives data to/from 4 CPUs not_bit simultaneously * * * * ij 1 Bit Max. access time is about 2 ns vdd (0.18 µm) Bitline1-4Not bitline1-4 Needed access time 6 ns • Organized in blocks of 64 lines bit • Line width is parametrizable gnd 1 Bit \star \star \star * * * * bit vdd Senseamplifiers Dout1 Dout2 Dout3 Dout4 🚽 gno Four blocks of the MPM with additional test logic in 0.35 µm process

word4 word3 word2

not_bit

out 🖌

Synchronization

- Three instructions for synchronization
 - SEM sets the synchronization mask
 - **SYN** suspend the PC
 - SYT copies the synchronization register
- Implementation of flexible synchronization patterns
- Synchronization implemented as a side effect of access to the GRF

GRF

Data I/O

- Direct input from preprocessor via multi ported registers
- Private I/O to external links
- System bus for peripheries
- Arbiter to select a CPU

 —	 	-	 -	

Summary

- High Energy Physics presents very interesting challenges in the computer science (high throughput, low latency, low overhead, massively parallel processing)
- Use of Multi Ported Memories (MPM) enables integration of multiple generic processor cores as MIMD unit
- MPM as global register file allows zero overhead, asynchronous multi processor communication (semaphores, locks, etc.)
- MPM operating as buffer memory provides scalable, independent access to shared data structures
- MPM operating as buffered crossbar switch allows tight integration of I/O for network and I/O processors
- For further information contact www.ti.uni-hd.de