A Single Chip Terabit Switch

Speaker: Fred Heaton

Authors: Bill Dally, Wayne Dettloff, John Eyles, Trey Greer, John Poulton, Teva Stone, Steve Tell

Architecture Overview

$140998 \mathrm{Mb} / \mathrm{s}$ - $3.125 \mathrm{~Gb} / \mathrm{s}$

Applications

- 3/5 Stage Clos Network configurations 9800 port SNB 3 stage Clos network (30+ Tbps)
- Protection switching
- Video routing
- DWDM OEO switching applications

Receiver

Switch

To Tx
-Full reconfiguration and multicast support

- Asynchronous operation
-Differential data path design
-Byte wide datapath + 1 "clock"

Transmitter

- Differential, CML signaling
- Transmitter Pre-emphasis
- On-chip adaptive termination
switch From
select Switch

© 2000 Velio Communications, Inc.

Technology

- 0.18 micron, 7 Layer Metal
- Flip-chip die attach
- Ceramic BGA package

1 mm ball pitch
36×36 full array (1296 pins)
168 Vdd pins (1.8 volt nominal)
13 Ivdd pins (2.5/3.3 volt nominal)
473 Ground pins

Electrical/Performance Specs

- Rx Input Sensitivity - 35 mV
- Jitter Tolerance - 0.65 UI
- Jitter Generation - 0.25 UI
- Plesiochronous tracking of 200 ppm difference between reference and embedded data clock
- Switch Reconfiguration time $\sim 30 \mathrm{uS}$
- Clock Lock time ~9uS
- Selectable output levels (675 mV max)
- Power Dissipation

18 Watts @ 2.5 Gbps (1.8 V operation)
22 Watts @ 3.125 Gbps (1.8V operation), 130mW/TxRx pair

Receiver

Early Late Logic

Switch Design

Nominal Spice simulation, 2.5 Gbps operation

Transmitter

Programmable
 Termination

Quadrature clocks

Transmitter Current Steering Element

- 4 identical sets of current steering elements
-Separate staggered clocks provided to each for slew rate control
-Programmable bias generator (5 settings)
-Equalization tap (5 settings)

Interconnect Performance @ Gigabit rates

- Skin effect attentuation $-\sqrt{\text { freq }}$ relationship
- Dielectric loss - to first order, linear attenuation with frequency
- Serial transmitters use pre-emphasis to compensate for signal distortion effects of FR4

Example Waveform (No Pre-emphasis)

Example Waveform (Pre-emphasis)

- Pre-Emphasis 1-tap equation:
$\operatorname{Vpr}(n)=a * \operatorname{Vi}(n)-b^{*} \operatorname{Vi}(n-1)$
Narrows pulse which opens the transmit eye at the receiver

Pre-Emphasis at $2.5 \mathrm{~Gb} / \mathrm{s}$, PRBS data:

At Transmitter: No Pre-Emphasis

Signal at Receiver

On-chip Processor

- 8 bit Microprocessor
- 4 K x 14 bit instruction ROM
- 4 K x 14 bit instruction RAM
- 512×8 bit data RAM
- External EEPROM interface
- On reset processor performs
- On-chip register initialization
- Default switch configuration
- Receiver offset trim
- Termination resistor calibration
- Ongoing polling loop
- Register updates, termination resistor updates

$2^{10}-1$ PRBS, 3.577 Gbps, 4" FR4

- Duty cycle distortion present due to internal clock load imbalance
- Eye reduction in both the time domain and amplitude

Terabit Switch Building Blocks

- Crosspoint switch demonstrates two key building blocks High-speed I/Os
High-performance switch core
- Different switches can be realized by adding applicationspecific logic between these
- Grooming switch

Framers and time-slot interchangers

- Cell switch

Scheduler and queueing

Other Products

- VC2002 SONET/SDH Grooming Switch

72 Integrated $2.5 \mathrm{~Gb} / \mathrm{s}$ I/O port pairs
SONET Input and Output Processing
SONET Input and Output Processing
ST-192(c) Support
STS-1 level switching
(3456 x 3456 STS-1 Switch)
multi-stage scalable architecture

- VC1001/2/3 Octal SERDES
full-duplex, 1Gbps-3.125 Gbps, 1.5-2.1 Watts
Quad version also available

