

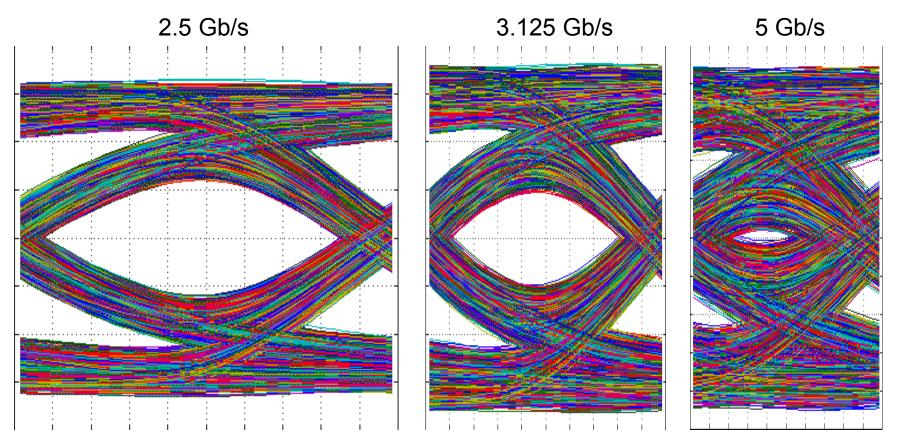
The Leader In Backplane Communication Systems

ENABLING MULTI-TERABIT CONNECTIVITY HOTCHIPS 13

- Communication Trends
- Obstacles
- Our Approach
- Adaptation
 - Dispersion
 - Reflection
 - Crosstalk
- Conclusions

Communication Trends

- Next generation systems demand up to 10 times growth in data (e.g. 1 Gigabit to 10 Gigabit Ethernet)
- Increased demand for bandwidth worldwide
- Significant speed advances in connectivity
 - Optical networks
 - Copper based networks
- Data bottlenecks at the switches and routers
 - More specifically the internal backplane
- Demand for higher speed backplane transceivers


- More sensitive to dielectric and skin effect loss
 - Dispersion => adjacent symbol ISI
- More sensitive to signal termination
 - Reflection => distant symbol ISI
- Most sensitive to interferer coupling
 - The signal to crosstalk ratio decreases with frequency

... Every Channel can be Different

The Problem Qualitative Observations

• Simulated Eye Diagrams (34 in. FR4)

Our Approach

- Iteratively/simultaneously attack the problem at circuit and system levels
- Design the system to make a solution that is easier to implement and robust

Understanding the Problem

- Developed a proprietary simulation methodology to:
 - Permit rapid evaluation of transceiver topologies
 - Line codes
 - Convergence algorithms
 - Coupled with widely varying channel conditions
 - Include second order effects of the physical channel and the resultant system/circuit design
 - Accurately move from both virtual and measured channels to the system/circuit design environment

Measurement Methodology

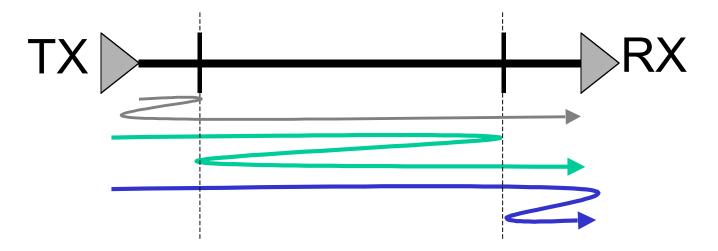
- Channel measurements from prototypes, production systems and in-house test boards
- Dozens of differential 2-port S-parameter measurements of real boards
 - Different connectors
 - Different lengths
 - Different board owners (customers and connector vendors)
 - Different material and board topologies
- Crosstalk transfer functions from neighboring pairs measured in the same way
 - Near end
 - Far end

Design Techniques

- Four-level signaling to reduce line rate
- Scrambling to eliminate transmitted tones
- Dynamically configurable adaptive transmit equalizer to mitigate near and far ISI
 - Equalization depends on received signal
- Adaptive transmit power control to mitigate Crosstalk
 - Transmit power depends on received signal

Enabling Adaptation

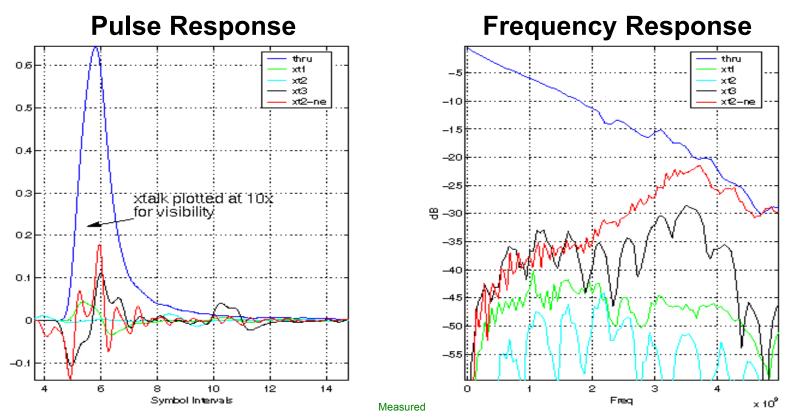
- Want Rx-side to communicate with Tx-side
 - Cannot interrupt user data stream
- Communication overhead already exists
 - Coding normally used to DC balance the line
 - Trade deterministic DC balance for statistical balance
- Enables communication channel back to the transmitter
 - Auto-negotiation for initial blind convergence
 - Zero-overhead back-channel link



- Backplane channel has a low-pass characteristic
 - Causes attenuation and dispersion
- Adaptively pre-distort the transmit signal to counter low-pass
 - Want flat response over frequency for all channels

Reflection Challenges

- Reflections from non-ideal connectors and from non-ideal transmitters and receivers
- Reflections take at least 3 trips through part of the wire vs. 1 trip for signal
- Signal to signal reflection ratio improved for longer traces
- Reflections addressed through equalization


Adaptation for Reflection

- Impedance variations compromise signal integrity
 - Connectors, vias, and package parasitics
 - Causes reflections
- ISI from non-adjacent symbols
 - Depends on physical proximity of discontinuity
- Sufficiently long FIR filter can cancel reflections
 - Implement as a sparse filter
 - Identify dominant reflection source
 - Adjust magnitude to minimize reflection
- Roving compensation tap

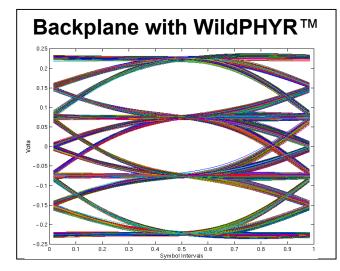
• Transmission with Crosstalk

Typical Backplane Including Connectors

Adaptation for Crosstalk

- Coupling from other transceivers
 - Similar to ISI but impractical to cancel
- Level the playing field
 - No dominant aggressor or victim
- Adaptively adjust transmit level
 - Results in equal receive amplitude independent of trace length
- Crosstalk sensitivity reduced
 - Adaptive transmit levels
 - Reduced frequency
 - Margin from codebook


WildPHYR™ Implementation


- Set the speed evolution path on a new track
 - Use multi-level analog signaling to run at lower frequency
 - Trade speed for complexity
 - Push speed again
- Aggressive adaptive equalization
 - Compensates for line/board impairments
 - Compensates for trace and length variations
- Process technology
 - 0.25u CMOS
 - Driven by DSP complexity, integration
 - Mixed signal compatibility

WildPHYR[™] (The Chip)

- The first practical demonstration of WildPHYR[™] technology
- Implementation of 5Gb/s digital signal processing in CMOS
- Fast multi-level analog signaling transceiver realized
- Self configurable adaptive equalization AT SPEED
- Backplane specific DSP enables virtually error-free transmission
- In-system channel evaluation, analysis and configuration

Simulated

