

A 2.5Tb/s LCS Switch Core

Nick McKeown Costas Calamvokis Shang-tse Chuang

LCS: Linecard to Switch Protocol ✤ What is it, and why use it? 2. Overview of 2.5Tb/s switch. 3. How to build scalable crossbars. 4. How to build a high performance, centralized crossbar scheduler.

Next-Generation Carrier Class Switches/Routers

Benefits of LCS Protocol

Large Number of Ports.

- Separation enables large number of ports in multiple racks.
- Distributes system power.
- 2. Protection of end-user investment.
 - ✤ Future-proof linecards.
- In-service upgrades.
 - ✤ Replace switch or linecards without service interruption.
 - 4. Enables Differentiation/Intelligence on Linecard.
 - Switch core can be bufferless and lossless. QoS, discard etc. performed on linecard.

Redundancy and Fault-Tolerance.

Full redundancy between switches to eliminate downtime.

Main LCS Characteristics

1. Credit-based flow control

- * Enables separation.
- Enables bufferless switch core.

2. Label-based multicast

Enables scaling to larger switch cores.

3. Protection

✤ CRC protection.

Tolerant to loss of requests and data.

- 4. Operates over different media
 - ✤ Optical fiber,
 - Coaxial cable, and
 - Backplane traces.

Adapts to different fiber, cable or trace lengths

5

LCS Ingress Flow control

LCS Adapting to Different Cable Lengths

LCS Over Optical Fiber 10Gb/s Linecards

Example of OC192c LCS Port

12 Serdes Channels

LCS: Linecard to Switch Protocol What is it, and why use it? Overview of 2.5Tb/s switch. How to build scalable crossbars. How to build a high performance,

centralized crossbar scheduler.

Main Features of Switch Core

2.5Tb/s single-stage crossbar switch core with centralized arbitration and external LCS interface.

1. Number of linecards:

- ✤ 10G/OC192c linecards: 256
- ✤ 2.5G/OC48c linecards: 1024
- ✤ 40G/OC768c linecards: 64
- 2. LCS (Linecard to Switch Protocol):
 - Distance from line card to switch: 0-1000ft.
 - Payload size: 76+8B.
 - Payload duration: 36ns.
 - Optical physical layers: 12 x 2.5Gb/s.
- 3. Service Classes: 4 best-effort + TDM.
- 4. Unicast: True maximal size matching.
- 5. Multicast: Highly efficient fanout splitting.

August 20th 2001 Internal Redundancy: 1:N.

2.56Tb/s IP router

Switch core architecture

1. LCS: Linecard to Switch Protocol

What is it, and why use it?

- Overview of 2.5Tb/s switch.
- 3. How to build scalable crossbars.
- 4. How to build a high performance, centralized crossbar scheduler.

How to build a scalable crossbar

Increasing the data rate per port Se bit-slicing (e.g. Tiny Tera).

2. Increasing the number of ports

- Conventional wisdom: N² crosspoints per chip is a problem,
- In practice: Today, crossbar chip capacity is limited by I/Os.
- It's not easy to build a crossbar from multiple chips.

Scaling: Trying to build a result of the scaling of the second se

Scaling using "interchanging" 4x4 Example Reconfigure every half cell time 2x4 (2 I/ Reconfigure every Cell time Cell time cell time 4x4 A Α B A INT INT R R B 2x4 (2 I/Os)

2.56Tb/s Crossbar operation

LCS: Linecard to Switch Protocol What is it, and why use it? Overview of 2.5Tb/s switch. How to build scalable crossbars. How to build a high performance, centralized crossbar scheduler.

How to build a centralized scheduler with true maximal matching?

Usual approaches

- Use sub-maximal matching algorithms (e.g. iSLIP)
 Problem: Reduced throughput.
- 2. Increase arbitration time: Load-balancing

Problem: Imbalance between layers leads to blocking and reduced throughput.

3. Increase arbitration time: Deeper pipeline

Problem: Usually involves out-of-date queue occupancy information, hence reduced throughput.

How to build a centralized scheduler with true maximal matching?

Our approach is to maintain high throughput by:

- 1. Using true maximal matching algorithm.
- 2. Using single centralized scheduler to avoid the blocking caused by load-balancing.
- 3. Using deep, strict-priority pipeline with up-todate information.

Strict Priority Scheduler Pipeline

Strict Priority Scheduler Pipeline

Strict Priority Scheduler Pipeline

Why implement strict priorities in the switch core when the router needs to support such services as WRR or WFQ?

- 1. Providing these services is a Traffic Management (TM) function,
- 2. A TM can provide these services using a technique called Priority Modulation and a strict priority switch core.

1. LCS: Linecard to Switch Protocol

✤ What is it, and why use it?

- 2. Overview of 2.5Tb/s switch.
- 3. How to build scalable crossbars.
- 4. How to build a high performance, centralized crossbar scheduler.