Tutorial HotChips 01

Silicon Architectures for Wireless Systems - Part 2 Configurable Processors

Jan M. Rabaey BWRC University of California @ Berkeley http://www.eecs.berkeley.edu/~jan

With contributions from J. Wawrzynek and A. Dehon

The Energy-Flexibility Gap

Berkeley Wireless Research Center

Reconfigurable Industry Take-off

Session: DAC 2001

FPGA

Processor

Reconfigurable Computing IS Reconfiguring the Industry

The Growth of Reconfigurable

Research Center

Source: Schaumont et al., DAC 2001

(Re)configurable Computing: Merging Efficiency and Versatility

Spatially programmed connection of processing elements.

$$y = Ax^2 + Bx + C$$

"Hardware" customized to specifics of problem. Direct map of problem specific dataflow, control. Circuits "adapted" as problem requirements change.

Spatial vs. Temporal Computing

Research Center

Source: A. Dehon and J. Wawrzynek

Benefits of Programmable

- Non-permanent customization and application development after fabrication

 "Late Binding"
- economies of scale (amortize large, fixed design costs)
- time-to-market (evolving requirements and standards, new ideas)

Disadvantages

- Efficiency penalty (area, performance, power)
- Correctness Verification

Spatial/Configurable Benefits

- 10x raw density advantage over processors (and increasing)
- Energy efficiency (potentially)
- Locality, regularity, and predictability
- Ultimate distributed architecture
- Scalable with technology
 - Relies mostly on increase in computational density
 - Avoids most of the physics pitfalls threatening highperformance computing

Spatial/Configurable Drawbacks

Resource management

- Each compute/interconnect resource dedicated to single function
- Must dedicate resources for every computational subtask
- Infrequently needed portions of a computation sit idle --> inefficient use of resources
- But ... not a real issue when transistors are abundant
- Potential mismatch between operations and operators
- Interconnect plays dominant role

Density Comparison

RISC Processors

Processor vs. FPGA Area

Processors and FPGAs

Year	Design	Organization	λ	λ^2 area	cycle	$\frac{\text{ge's}}{\lambda^2 \cdot \text{s}}$	_
Microprocessors							-
1984	MIPS	1 × 32	1.5μ	15M	250ns	17	
1987	MIPS-X	1 × 32	1.0μ	68M	50ns	19	
1994	MIPS	1 × 32	0.28μ	1.7G	2ns	19	
1992	Alpha	1 × 64	$ 0.38\mu $	1.7G	5ns	15	
1995	Alpha	2 × 64	0.25μ	4.8G	3.3ns	18	
1996	Alpha	2 × 64	0.18µ	6.8G	2.3ns	17	_
Reconfigurable ALUs						-	
1992	PADDI	8 × 16	0.6µ	126M	40ns	50	
1995	PADDI-2	48 × 16	0.5μ	515M	20ns	150	_
FPGA	\S						-
1986	Xilinx 2K	1 CLB (4 LUT)	$ $ 1.0 μ	500K	20ns	100	
1988	Xilinx 3K	64 CLBs (2 4-LUT)	0.6 <i>µ</i>	83M	13ns	120	
1992	Xilinx 4K	49 CLBs (2 4-LUT)	0.6 <i>µ</i>	61M	7ns	230	
1995	Xilinx 5K	49 CLBs (4 4-LUT)	0.3μ	110M	óns	290	elev Wireles

eley Wireles Research Center

Issues in Configurable Design

- Choice and Granularity of Computational Elements
- Choice and Granularity of Interconnect Network
- (Re)configuration Time and Rate
 - Fabrication time --> Fixed function devices
 - Beginning of product use --> Actel/Quicklogic
 FPGAs
 - Beginning of usage epoch --> (Re)configurable FPGAs
 - Every cycle --> traditional Instruction Set Processors

Granularity of Computational Elements

The FPGA Approach: The Logic Level

Granularity of Computational Elements

Bit-Level Operations e.g. encoding

Dedicated data pathsArithmetic kernelse.g. Filters, AGUe.g. Convolution

For Spatial Architectures

- Interconnect dominant
 - area
 - power
 - time
- ...so need to understand in order to optimize architectures

Dominant in Area

Function	Area (λ^2)	
LUT MUX + ff	20K	(generous, closer to 10K)
Programming Memory	80K	(240K typical unencoded)
Interconnect	700K	(for $N_p = 2048$)
	1	+ Berkeley Wireless

Research Center

Dominant in Time

		Total	LUT	Inter.
Design	Path	Delay	Delay	%
Altera	LUT-local-LUT	2.5 ns	2.1 ns	16%
10K130V-2	LUT-row-local-LUT	6.6 ns	2.1 ns	68%
	LUT-column-local-LUT	11.1 ns	2.1 ns	81%
	LUT-row-column-local-LUT	15.6 ns	2.1 ns	87%
	LUT-row-fanout-local-LUT			
	(fanout)	28 ns	2.1 ns	90%

Dominant in Power

XC4003A data from Eric Kusse (UCB MS 1997)

Interconnect Design Issues

- Flexibility -- route "anything"
 (within reason?)
- Area -- wires, switches
- Delay -- switches in path, stubs, wire length
- Power -- switch, wire capacitance
- Routability -- computational difficulty finding routes

A Naïve Approach: Crossbar

 Any operator may consume output from any other operator

Avoiding Crossbar Costs

- Good architectural design
 Optimize for the common case
- Designs have spatial locality
- We have freedom in operator placement
- Thus: Place connected components
 "close" together

– don't need full interconnect?

Meshes don't scale

Typical Extensions

- Local neighbor-to-neighbor Interconnections
- Segmented Interconnect
- Hierarchical Network (tree, mesh)

Example 1: The Pleiades Reconfigurable Architecture

- Computational kernels are "spawned" to satellite processors
- Control processor supports RTOS and reconfiguration
- Order(s) of magnitude energy-reduction over traditional programmable architectures

Matching Computation and Architecture

Two models of computation: communicating processes + data-flow Two architectural models: sequential control+ data-drive Berkeley Wireless

Research Center

Distributed control and memory

Reconfigurable Kernels for W-CDMA

Impact of Architectural Choice

Berkeley Wireless Research Center

lopp

Architecture Comparison

LMS Correlator at 1.67 MSymbols Data Rate Complexity: 300 Mmult/sec and 357 Macc/sec

Туре	Power	Area
TMS320C54*	460 mW	1089 mm ²
Pleiades	18.09 mW	5.448 mm^2
ASIC [Zhang]	3 mW	1.5 mm^2

16 Mmacs/mW!

Note: TMS implementation requires 36 parallel processors to meet data rate - validity questionable

Inter-Satellite Communication

- Data-driven execution
 - A satellite processor is enabled only when input data is ready
- Data sources generate data of different types: scalars, vectors, matrices
- Data computing processors handle data inputs of different types
 end-of-vector token

AGP Satellite

- Address generator for the SRAM satellite
- Generates data streams of different types; all other satellites process data streams
- Uses loop counters and stride counters to support 2 levels of nesting
- Control information sent in parallel with the data using 2 additional control bits

Satellite Processors: FPGA

- Reconfigurable for both logic function and interface control
- 4 x 9 CLB array in total
- 5-input 3-output CLBs
- 3 levels of interconnect hierarchy
- Mapped to various arithmetic functions and control
- Programmable clock generator

Low-Energy Embedded FPGA

- Test chip
 - 8x8 CLB array
 - 5 in 3 out CLB
 - 3-level interconnect hierarchy
 - 4 mm^2 in 0.25 μm ST CMOS
 - 0.8 and 1.5 V supply
 - Simulation Results
 - 125 MHz Toggle Frequency
 - 50 MHz 8-bit adder
 - energy 70 times lower than comparable Xilinx

0

Berkeley Wireless Research Center

 Parameterized module generator available

Reconfigurable Interconnect Network

Level-1 Mesh

Universal Switchbox

Irregular mesh for Heterogeneous blocks

- A channel along every side of each block
- A switch box at every cross-point

Level-2 Mesh

Hierarchical Switchbox

Building hierarchy by clustering

- Intra-cluster: mesh structure
- *Inter-cluster*: larger-granularity mesh

Saves energy by a factor of 7 compared to straightforward crossbar network!

Fast Design Space Exploration Interconnect Models

Mesh

Multi-Bus

Hierarchical Mesh

Reconfiguration Model

- Configuration codes are created statically at compile time
- Every configuration memory is reset and rewritten with new configuration code before each kernel
- The core processor uses memory read/write instructions to perform the reconfiguration

Kernel Execution & Configuration

Maia: Reconfigurable Baseband Processor for Wireless

- 0.25um tech: 4.5mm x 6mm
- 1.2 Million transistors
- 40 MHz at 1V
- 1 mW VCELP voice coder
- Hardware
 - 1 ARM-8
 - 8 SRAMs & 8 AGPs
 - 2 MACs
 - 2 ALUs
 - 2 In-Ports and 2 Out-Ports
 - 14x8 FPGA

Results of VCELP Voice Coder

VCELP code breakdown

Function	Basic Blocks/ sec.	ARM 8 Cycles (per block)	Cycle Percentage
Vector Dot Product	2.7M	14	30.4%
IIR Filter	1.7M	16	21.4%
Vector Sum w/ Scalar Multiply	1.1M	16	14.9%
Compute Code Vector	280K	32	7.4%
Compute G	180K	28	4.5%
Dot Product with Opposite Order	82K	16	1.1%
Total			79.7%

VCELP Energy breakdown

Functiona	lity	Energy (mJ) for 1 sec of VCELP speech processing
	Dot product	0.738
	FIR filter	0.131
	IIIR filter	0.021
Kernels	Vector sum with	0.042
	scalar multiply	
	Compute code	0.011
	Covariance matrix	0.006
	compute	
Program control		0.838
Total		1.787
Total		1.787

79.7% of VCELP Code maps onto Reconfigurable Datapath

Compared to state-of-art 17mW DSP

Design Methodology and Flow

- Requires architecture exploration over heterogeneous implementation fabrics
- Should support refinement and co-design of hardware and software, as well as behavior and architecture
- Should consider all important metrics, and present PDA (Power-Delay-Area) perspective

Software Methodology Flow

Hardware-Software Exploration

Berkeley Wireless Research Center

Industrial Example 1: Xtensa Configurable Processor

Research Center

Source: Tensilica, Inc

Design Methodology – a Crucial Component

ley Wireless Research Center

Example: A DES Encryption Extension

Improvement over GP 32-bit processor

Source: Tensilica, Inc

Industrial Example 2: Chameleon RCP (Reconfigurable Communications Processor)

Chameleon Systems is clearly plowing new ground with an instantaneously reconfigurable processor that is capable of performing high-end DSP functions that until now have been possible only through specialized ASICs and FPGAs. The CS2000 will get a lot of interest in hot new DSP markets, like 3G wireless basestations.

--- Will Strauss, Forward Concepts

Source: Chameleon, Inc

Reconfigurable Processing Fabric

CS2000 Performance Numbers

16-bit Operations/sec (w/o shift ops)	24,000 M
16-bit Operations/sec (w/shift ops)	45,000 M
16-bit MAC/sec	3,000 M
On-Chip Memory Bandwidth	48 GByte/sec
Main Memory Bandwidth	1 GByte/sec
Programmable I/O Bandwidth	1 GByte/sec
1024-point FFT	10 µsec
48-tap Symmetric FIR	125 MSample/sec
cdma2000 Chip Rate Processing	50 channels
UMTS Chip Rate Processing	16 channels
Viterbi	200 channels

CS2000 Performance

	FIR	FFT	Viterbi	
	24 tap	1024 point	GSM	
	200 samples	Complex radix 4	16 states, full rate	
CS2112-100	4 7x	3.8x	6.0x	
(0.25µ process)	7.7 \	0.07	0.07	
TI 6203-300	1.0x	1.0x	1.0x	
(0.15µ process)				

Source: Chameleon, Inc

Power efficiency?

Design Methodology

Industrial Example 3:

The MorphICs Dynamically Reconfigurable Architecture (DRA)

Realizes cost, size and power targets similar to traditional core+hardwired

W

Berkeley Wireless

Research Center

Basestation of the Next Generation Wireless

Research Center

HW Multistandard Solutions

The common approach to hardware design involves:

multiple ASIC's to support each standard.

DSP	Digital Hardwired ASIC	IF	RF
	Digital Hardwired ASIC	IF	RF
Control Processor	Digital Hardwired ASIC	IF	RF
	<u>Unique</u> Combinations	4	

Hardwired implementation is not scalable or upgradeable to new standards.

- This approach costs time in a time-to-market dominated world.
- Creating new chipsets for every technology combination critically challenges available design resources!

SW Multistandard Solution

Applying instruction-set processor architectures to all baseband processing would be desireable...

DSP	IF	RF
	F	RF
Control Processor	IF	RF

but is simply not an good implementation for base stations:

-Unacceptably high cost per channel

-Unacceptably large power per channel

This is definitely not a viable implementation for terminals

FPGA the Solution? Cellular Handset Using Current FPGA

Successfully Using Reconfigurability

Application-Specific Leverage

FOCUS on first on applications and constituent algorithms, not the silicon architecture !

Wireless Communications Transceiver Signal Processing

Minimize the hardware reconfigurability to constrained set

<u>Maximize</u> the software parameterizability and ease of use of the programmer's model for flexibility

Application-Specific MOPS in Digital Communications

Morphics' DRL Architecture

Heterogeneous Multiprocessing Engine Using Application-Specific Reconfigurable Logic

DRL Kernels

Key Pieces of Design Methodology

System-level Profiling

- Analyze sequences of operations (arithmetic, memory access, etc)
- Analyze communication bottlenecks
- Key flexible parameters (algorithm v architecture parameters)

Architecture-level Profiling

- ALU/kernel definition (sequences of operators)
- Memory profile
- Type of configurability required for flexibility
- Macro-sequencer development

Implementation

- SW- programmer's model developed at architecture specification stage
- SW- API proven out via behavioral models & demonstrator hardware
- VLSI-focus on regular predictable timing and routability
- VLSI- embedded reconfigurability in an ASIC flow

Architectural Implementation Comparison: Reconfigurable FFT

Architectural Implementation Comparison: Reconfigurable Viterbi Decoder

Energy per Decoded Bit vs. Number of States

* All results are scaled to $0.18 \mu m$

Decoding Rate per mm² vs. Number of States

Commercial Specializations

- Configurable computing is finding its way into the embedded processor space
- Best suited (so far) for
 - Flexible I/O and Interface functionality
 - providing task-level acceleration of "parametizable" functions
- Software flow still subject to improvement

DO NOT FORGET CONFIGURATION OVERHEAD

