Tutorial Hot Chips 01

Silicon Architectures for Wireless Systems – Part 1

Jan M. Rabaey BWRC *University of California* @ Berkeley http://www.eecs.berkeley.edu/~jan

From Handsets to Mobile Devices

Internet access the most important driver (text, graphics, multimedia) Berkeley Infopad, One of the first wireless internet applicance 1990-1996

A Smorgasboard of Choices

And the Alternatives

Metropolitan Wireless Networks

- Various proprietary solutions
 - Ricochet (up to 138 Kb/sec)
 - Flarion Flash-OFDM (> 384 kBits/sec)

• Wireless LANs

- 802.11 (b,a); Hyperlan
- from 1 to 56 Mbit/sec
- Restricted to the 50 meter range (at present)

(Projected) Growth in 802.11 WLAN

Units, k

logel

Berkeley Wireless Research Center

Source: Cahners In-Stat 2001

The New Internet

The 1990s: Conquering the World The Network revolution

The 2000s: Extending toward the Small Enabled by integration and wireless connectivity

> Pre-1990: Client-Server Systems

The emergence of ad-hoc wireless networks – the wire replacement

Bluetooth, HomeRF
 ✓ up to 800 kBit/sec

Sensor networks
 ✓ Low data-rates

The Evolving Wireless Scene

Compelling Issues in Wireless (1)

Ubiquitous services put wireless spectrum at a premium

- Effective use of aether hampered by standardization and fragmentation
- Current spectral efficiency far below theoretical limits
- Emerging Solutions
 - Adoption of better spectrum utilization techniques (interference cancellation, multi-path fading mitigation and exploitation)
 - multi-functional, adaptive systems
- But ... huge appetite for computations

Evolution of MOPS Requirements in Cellular Single 384 kbps UTRA W-CDMA Channel

The Cost of Approaching Shannon's Bound The Bliss and Challenge of Error Coding

Dealing with Non-ideal Channels (e.g., fading)

0 0

5

10

Berkeley Wireless

Research Center

15

SNR (dB)

But...computationally hungry

The Cost of Dealing with Non-ideal Channels

* Assume 25 MHz bandwidth and 28 users

Source: Ning Zhang, UCB

Shannon beats Moore's law

Single-Chip DSPs are Lagging ...

Digital Processor Performance

Research Center

The Law of Diminishing Returns

- More transistors are being thrown at improving general-purpose CPU and DSP performance
- Fundamental bounds are being pushed
 - limits on instruction-level parallelism
 - limits on memory system performance
- Returns per transistor are diminishing
 - new architectures realizing only 2-3 instructions/clock
 - increasingly large caches to hide DRAM latency

Some observations

- Von-Neuman style instruction set architectures were perceived when switching devices and interconnections were extraordinarily expensive, and multiplexing-in-time provided the most economical solution
 - Intel 4004: 2000 transistors, 1 MHz clock frequency, 1 metal layer
- This led to the "clock-speed" affixation, which in fact is only a secondary measure of performance
- Power is rapidly becoming a limiting factor
 - Newest processors are including thermal sensors and automatic slow-down (throttling) using pipeline bubbles and nop's to combat overheating and meltdown

Compelling Issues in Wireless (2)

"The Last Meter Problem" Ubiquitous wireless networking requires steep reduction in cost and energy dissipation

- To be acceptable, radio cost has to be below 1\$
- Frequent battery replacement on 100's of devices unacceptable
- Technology not likely to be of major help

Energy to Play a Major Role

Courtesy: Ravi Subramanian (Morphics)

Energy Trends in DSPs

Energy Trends in DSPs Gene (Frantz)'s Law

Berkeley Wireless **Research Center**

Energy to Play a Major Role A holistic perspective

Energy = upper bound on the amount of available computation

Putting energy in perspective

Energy cost of digital computation

- 1999 (0.25μm): 1pJ/op (custom) ... 1nJ/op (μproc)
- 2004 (0.1μm): 0.1pJ/op (custom) ... 100pJ/op (μproc)
 - Factor 1.6 per year; Factor 10 over 5 years
 - Assuming reconfigurable implementation: 1 pJ/op

Energy cost of communication

- 1999 Bluetooth
 - 1 nJ/bit transmission energy (thermal limit 30 pJ/bit)
 - 2.4 GHz band, 10 m distance
 - Overall energy: 170 nJ/bit reception / 150 nJ/bit transmission (!)
 - Standby power: 300 μ W
- 2004 Radio (10 m)
 - Only minor reduction in transmission energy
 - Reduce transceiver energy with at least a factor 10-50

The Changing Metrics

- Power and/or Energy have become dominant drivers
 - Limiting factor for performance and reliability in wall-plugged applications
 - Enabler for wide-spread use of distributed computing and data access
- Energy reduction requires joint optimization process between application and implementation

The Changing Metrics

- Design complexity, and "context complexity" is sufficiently high that design verification is a major limitation on time-to-market
- Cost of fabrication facilities and mask making has increased significantly
 - NRE cost of new design has increased significantly
- Physical effects (parasitics, reliability issues, power management) are increasingly significant in the design process

- These must now be considered explicitly at the circuit level

Towards Fewer, but more Flexible and Reusable Silicon Platforms

The Changing Metrics

Performance as a Functionality Constraint ("Just-in-Time Computing")

Challenges in Single-Chip Radio Design

The Software Radio

- Idea: Digitize (wideband) signal at antenna and use signal processing to extract desired signal
- Leverages of advances in technology, circuit design, and signal processing
- Software solution enables flexibility and adaptivity, but at huge price in power and cost
- 16 bit A/D converter at 2.2 GHz dissipates 1 to 10
 W

The Mostly Digital Radio

The Opportunities ...

- Scaling of technology, of course
 - Performance doubles every 18 months
 - Energy reduced by 10 every 5 years

The system-on-a-chip

 Integration of heterogeneous functions on a single die leads to new solutions

Novel architectures

- Processor architectures exploiting concurrency (e.g. VLIW)
- Reconfigurable hardware
- Network-on-a-chip
- Novel circuit solutions
 - Voltage as a design variable
- Novel design methodologies
 - Communication-based Design
 - Platform-based Design

The Ideal "Radio-on-a-Chip" Platform

Combines performance, flexibility and energy-efficiency

- Heterogeneous
- Supports massive concurrency
- Matches the computational model
- Operates at minimum supply voltage and clock frequency
- Provides flexibility only where needed and desirable and at the right granularity

The System-on-a-Chip Nightmare

"Femme se coiffant" Pablo Ruiz Picasso 1940

The System-on-a-Chip Nightmare

Courtesy: Sonics, Inc

Current Integrated Wireless Transceivers

A "Board-on-a-Chip" Approach

Example: Single-Chip Bluetooth

40 mm² CMOS 0.25µm 5 metals MiM-capacitors 200Ω/ Resistors Flash

Source: Alcatel, ISSCC 2001

A Central Theme: Raising the Reuse Factor

Reuse comes in generations

Generatio	Reuse element	Status
1 st	Standard cells	Well established
2 nd	IP blocks	Being introduced
3 rd	Architecture	Emerging
4 th	IC	Early research

Source: Theo Claasen (Philips) – DAC 00

Platform-Based Design

"Only the consumer gets freedom of choice; designers need freedom *from* choice" (Orfali, et al, 1996, p.522)

- A platform is a restriction on the space of possible implementation choices, providing a well-defined abstraction of the underlying technology for the application developer
- New platforms will be defined at the architecture-microarchitecture boundary
- They will be component-based, and will provide a range of choices from structured-custom to fully programmable implementations
- Key to such approaches is the representation of communication in the platform model

Source:R.Newton

Hardware Platforms

Hardware Platform: not only a fully specified SoC but also a family of architectures that share some common feature:

A Hardware Platform is a family of architectures that satisfy a set of architectural constraints imposed to allow the re-use of hardware and software components.

The stronger the constraints the more component reuse but stronger constraints imply fewer architectures to choose from!

Hardware Platforms Not Enough!

- Hardware platform has to be abstracted
- Interface to the application software is API
- Software layer performs abstraction:
 - Programmable cores and memory subsystem with RTOS
 - I/O subsystem via Device Drivers

Software Platforms

The Platform Tension

Application Space

Architectural Space

The Platform Approach

Source: Alberto Sangiovanni-Vincentelli

Example: Philips Nexperia[™] DVP

Flexible architecture for digital video application

Source: Theo Claasen (Philips) – DAC 00

Research Cente

Nexperia[™] Scalability

MIPS CPU + Device blocks + Software

MIPS CPU + Trimedia CPU replacing some Device blocks

TriMedia CPU + Device blocks when control functions are minimal

- Single architecture, multiple product configurations
 - Processor core options TM32, TM64, MIPS32, MIPS64 ...
 - Device block options
- Highly programmable to weakly programmable

Source: Theo Claasen (Philips) – DAC 00

An Example of an Instantiation

Philips Nexperia NX-2700 A programmable HDTV media processor

Combines Trimedia VLIW with Configurable media co-processors

Pleiades: Digital Wireless Platform

The Architectural Choices

An Attractive Option: Multi-Processor System-on-a-Chip

Research Center

Courtesy: Chris Rowen, Tensilica

The Energy-Flexibility Gap

Communication-Based Design

Orthogonalizing Communication from Behavior

Historically lots of work on Behavior

- hierarchy well established
- several descriptions available (with variable levels of precision)
- synthesis available
- Communication less well investigated
 - hard to separate from behavior, usually intertwined
 - telecomm protocols are the best existing example

 Need to understand Formalism, Abstraction, and Decomposition for communication

DEFINED BY MODELS OF COMPUTATION!

Communication-based Design

An Integrated Radio Processor (TCI)

The "Network-on-a-Chip"

Hierarchical Mesh

	dot_ product	vector sum w/ scalar mult.	IIR	
	50	50	138	
Best	8.7	5.2	24.6	
Worst	17.7	14.7	43.4	
Best	4.7	3.8	18.8	
Worst	11.1	10.2	31.3	ley V
	Best Worst Best Worst	dot_ product50Best8.7Worst17.7Best4.7Worst11.1	dot_product vector sum w/ scalar mult. 50 50 Best 8.7 5.2 Worst 17.7 14.7 Best 4.7 3.8 Worst 11.1 10.2	dot_product vector sum w/ scalar mult. IIR 50 50 138 Best 8.7 5.2 24.6 Worst 17.7 14.7 43.4 Best 4.7 3.8 18.8 Worst 11.1 10.2 31.3

Platform Exploration The Y-Chart Approach

Summary and Perspective

- Technology scaling is redefining the term "complexity"
- System-on-a-Chip fosters renaissance in processor architecture, opening the door for new models and combinations thereof:
 Platform and Communication Based Design
- SOC for wireless driven by new set of metrics: how to simultaneously optimize flexibility, cost, energy, and performance?
- Application-Architecture Exploration is Focal Part of Implementation Methodology

