Preliminary Smart Dust Mote

Brett Warneke, Bryan Atwood, Kristofer Pister

Berkeley Sensor and Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

Smart Dust Goals

- Autonomous sensor node (mote) in 1 mm³
- Thousands of motes
- Many interrogators
- MAV delivery
- Demonstrate useful/complex integration in 1 mm³

COTS Dust

GOAL:

• Get our feet wet RESULT:

- Cheap, easy, off-the-shelf RF systems
- Fantastic interest in cheap, easy, RF:
 - Industry
 - Berkeley Wireless Research Center
 - Center for the Built Environment (IUCRC)
 - PC Enabled Toys (Intel)
 - Endeavor Project (UCB)
- Optical proof of concept

Power and Energy

- Storage
 - Batteries ~1 J/mm³
 - Capacitors ~10 mJ/mm³
- Sources
 - Solar cells
 - Full sun: ~0.1mW/mm², ~1J/day/mm²
 - Indoor: 0.1-10 μ W/ mm², 1-100mJ/mm²
 - Combustion/Thermopiles
- Energy Consumption
 - Digital control: ~1nJ/instruction (StrongARM SA1100)
 - Analog circuitry: ~1nJ/sample
 - Communication: ~1nJ/bit (passive transmitter)

Solar Power

- Silicon maple seeds
- Silicon dandelion seeds
- Currently 3% efficient
 - Sunlight: 26 μ W/mm²
 - Fluorescent room light: 0.21 μ W/mm²

Combustion

- Solid rocket propellant
- Integrated igniter
- Thermoelectric generator

20KU X150

888

Optical Communication Corner Cube Reflector (CCR)

- Capacitive actuation
- 150m demonstrated range

Courtesy of Victor Hsu

- 118bps with 8V actuation
- 670 pJ/bit

Optical Communication Advantages

- Large antenna gain
- Small radiator
- Spatial division multiple access (SDMA)
- Received power ∝1/d²
 - RF received power $\propto 1/d^{2 \rightarrow 7}$
- Output efficiency
 - Optical
 - Laser slope efficiency
 - P_{overhead} = 1uW-100mW
 - RF
 - GMSK slope efficiency ~50%
 - P_{overhead} = 1-100mW

Limits to RF Communication

Cassini

- 8 GHz (3.5cm)
- 20 W
- 1.5x10⁹ km
- 115 kbps
- -130dbm Rx
- 10⁻²¹ J/bit
 - kT=4x 10⁻²¹ J @300K
 - ~5000 3.5cm photons/bit

Canberra4m, 70m antennas

System Components Optical Receiver

- •Transimpedence amplifier with PMOS as feedback
- Inverters as gain stages
- •Simulated avg. $4\mu W$ at $1kHz \Rightarrow 4nJ/bit$

•PMOS transistors in separate wells

•4 PMOS transistors per stage, 4 stages

Increase potential by roughly 2Vdd per stage

System Components LFSR/Shift Register - Standard Cell

- 8-bit linear feedback shift register (LFSR)
- 20-bit SR preset to 0101... training sequence
- Standard cell library
 - single phase pseudo-static logic style
 - targeted at 50-200MHZ
- 0.026 mm²
- Measurements
 - 5.25nW at 1.4V, 1kbps \Rightarrow 5.25pJ/bit
 - 440pA leakage at 1.4V

- 1.19nW at 0.7V (V_t=0.55V), 1kbps \Rightarrow 1.19pJ/bit

System Components LFSR/Shift Register - Custom

- Ultra low-power design techniques
 - Static complementary CMOS logic style
 - Race-free asynchronous circuits
 - Branch-based layout
 - Minimum sized transistors
 - Minimize short circuit currents, and transistions
- 0.012 mm²
- Simulated: 600pW at 1.4V, 1kbps
- Measured functional for Vdd < 0.5V

Simulation Results

- Digital Circuits: 600pW (600fJ/bit)
- Optical Receiver: 4µW (4nJ/bit)
- Charge Pump: 12.5µW (12.5nJ/bit)
- Entire system: 17µW (17nJ/bit)

Power supply

- Zn-Air cell: 92 hours/mm³
- Mg-Ti-Li rechargable cell: 3.3 hours/mm³
- 0.7mm² solar cell (sunlight)

Daft Dust Device

- 63 mm³
- Circuits: 0.25 μm CMOS
 - digital circuits underneath ground pad
 - metal shields to prevent photogenerated carriers
- CCR: Cronos MUMPS

- Receiver output to charge pump signal
- Charge pump driving CCR
- ~2 mm² solar cell power source

Future Work

- Thick-film batteries
- Integrated sensors
- •Laser reprogrammable microprocessor
- Laser beam-steering

Conclusion

- •Smart Dust Project
 - •Autonomous sensing and communication
 - •1 mm³
- Daft Dust
 - •Preliminary Smart Dust mote
 - Micromachined CCR
 - •17 μ W, 63 mm³

