

The Au1000[™] Internet Edge Processor: A High Performance, Low Power SOC

The First Chip in a Family of Parts from Alchemy Semiconductor, Inc.

> Suzanne Plummer Hot Chips 2000

- Design Goals
- High Performance Microarchitecture Highlights
- Low Power Microarchitecture Enhancements
- System Bus Structure / Coherency
- Peripherals / Integration Strategy
- Summary

- Design Goal: Highest Performance at .5W
- Design Goal: Industry Standard Architecture
 - MIPS Architecture License
 - Developed own microarchitecture and implementation
 - First in a family of parts
- Design Goal: Low Cost Production
 - Custom Core
 - Custom Cell Libraries for Synthesis
 - Portable Design and Layout Rule Set
 - Au1000 produced in standard TSMC .18µ LV Process
- Design Goal: Time to Market
 - Purchased IP Blocks
 - Optimal Circuit Design for time to market

Au1000 SOC

August 2000

- Compliant with the MIPS32 standard
- MIPS II R3000 integer instructions
- New Instructions
 - Multiply-add and Multiply subtract
 - Targeted multiply
 - Count Leading Zeroes/Count Leading Ones
 - Wait
 - Conditional move
 - Prefetch
- ♦ R4000 MMU and Privileged Architecture

	ŀ	Fetch	Iss	ue	Execute	Cache	Write
ALU	I \$	Reg Decode	Reg File Read		ALU	BUF	Reg File Write
MEM	I \$	Reg Decode	Reg File Read	Fast Disp Add	TLB Tag Access	D\$ Hit? Data Access	Reg File Write

- Pipelined register file access into fetch stage
- Load/Store Effective Addr computed in I-stage
 - Gives cache two cycle access

Zero Penalty Branch

Au1 Core

August 2000

- Caches
 - 16K, Four-Way Set Associative Non-Blocking Data Cache
 - 16K, Four-Way Set Associative Instruction Cache
 - Write-back Cache
 - Allocate on Reads
 - Cache Line Locking Support
 - 32 Byte Line Size
 - Physically Tagged
 - Hit-under-miss in Data Cache

- Cache Management Features
 - Programmable Set Allocation Policy controlled by Page attribute
 - Line Locking
 - Prefetch Instructions (Instruction and Data)
- Low Latency Access to on-chip buses
- Cache Coherency
 - Coherent DMA support
 - Snooping for MP support
 - MESI protocol implemented

- ◆ MMU
 - Hardware support for Software Breakpoints
 - Separate Interrupt Exception Vector
 - TLB
 - ◆ 32 dual-entry fully associative
 - Variable page sizes 4KB 16MB
 - 4 Entry ITLB
- Write Buffer
 - 16, 32-bit entries
 - Byte Merging and Word Gathering

- ♦ Multiply-Accumulate (MAC) Hardware
 - One 32x16 MAC per Clock
 - One 32x32 MAC per Every Other Clock
- ♦ EJTAG
 - CPU Control with Start, Stop and Single stepping
 - Software Breakpoints via the SDBBP Instruction
 - Test Access Port Facilitates Download of Application Code

Low Power Microarchitecture Enhancements

- Aggressive use of Conditional Clocking
- ◆ 4-way associative data cache without requiring 4 data accesses
- No Speculative Execution
- Full speed Branches without Prediction

Low Power Microarchitecture Enhancements

- ♦ Pseudo-static design to 0 Hz
- Low Power modes
 - Idle1 Clocks turned on to snoop system bus
 - Idle2 Clocks not turned on for snoops
 - Sleep Power down core
- Minimize Leakage with low power cell libraries
- Minimum VDDi at 1 V (approx)
- ◆ 3.3V I/O

Power Estimates

Power Mode	Operating Conditions	Estimated Power	
	1.25V, 200MHz	<200mW	
Normal	1.5V, 400MHz	500mW	
	1.8V, 500MHz	900mW	

Au1 Core + System Bus

Alchemy System Bus

- ♦ 36-bit address bus
 - Additional address space to support bridges to external buses
- Connect through defined transceiver interface
- Bus clock ratios from 1/2 to 1/5 of core frequency.

- Coherency Options
 - Nothing force software to handle
 - Retry and push out to slow memory and re-read
 - Intervention fastest device supplies data
- Alchemy System Bus Coherency Support
 - Intervention policy for high performance sharing
 - Supports multiple CPUs
 - DMA needs no extra logic to participate in data sharing

Intervention

Au1000 SDRAM Controller

- Tightly coupled SDRAM interface
 - Supports System Bus intervention protocol
- ♦ 32-bit interface
- ◆ 100 MHz SDRAM
- ◆ 3 software configurable chip selects allowing contiguous memory with different sizes and no adders
- ♦ ¹/₂ speed of system bus
- Low Latency SDRAM access
- Four open banks per chip select

- Supports SRAM, Flash, ROM, and Page Mode ROM
 - Supports System Bus intervention protocol
- Supports 32- and 16-bit devices
- 4 chip selects
- Address and data lines can be used to control PC Card/Compact Flash, LCD, and external bus interfaces

Au1000 System Bus Peripherals

♦ USB Host Controller

- Compliant with USB Protocol Revision 1.1
- OHCI 1.0 Compliant

◆ DMA

8 channel general purpose DMA controller for simple serial line support

◆ IrDA

- Supports DMA, transmit and receive FIFOs, CRC and PHY layer
- 4 Mb/sec

♦ Ethernet

- 2 x 10/100 Ethernet MAC devices
- Dedicated DMA controller
- IEEE 802.3, 802.3u, 803.3x spec compliance
- Full and Half duplex

Au1000 SOC

August 2000

Au1000 Peripheral Bus

- Peripheral Bus
 - Low latency access to simple peripherals
 - Allows I/O system access times to scale with CPU speed
 - Connect through defined transceiver interface

Au1000 Simple Peripherals

- Interrupt Controller
 - 2 interrupt controllers each supporting 32 interrupt sources
 - WAKEUP or CPU Interrupt
- USB Device Controller
 - Compliant with USB Protocol Revision 1.1
- ◆ GPIO
 - 2 x 32 port GPIO devices
 - 32 maximum
 - 6 dedicated pins
 - 26 shared pins

Au1000 Simple Peripherals

- ◆ UART
 - 4 UARTs
 - One UART supports modem Controls
- ♦ SPI / SSP Serial Interfaces
 - Two Additional for either SPI or SSP support
- ♦ I2S Controller
 - 3 or 4 line serial interface to Audio Codec
 - Philips spec compliant
- AC97 Controller
 - 4 line serial interface to AC97 Codec

- High Performance
 - 2X more performance than synthesized designs
 - 18 to 24 month time to market advantage in performance
- ◆ Low Power Longer Battery Life
 - 3 5X more power efficient
 - 10X better standby efficiency: Designed for low leakage
- Integration Lower System Cost
 - "Cut and paste" chip layout