

TMS320C64x™ Architecture Extensions Boost Performance for Broadband Communications and Imaging

Jeremiah Golston TMS320C64x™ DSP Applications Manager

Overview

- C6000 VelociTI[™] Advanced VLIW Architecture
- C64x VelociTI.2[™] Architecture Extensions
- Algorithm Examples and Benchmarks
- Memory and Peripheral System
- Code Compatible Roadmap

C6000 VelociTI[™] Advanced VLIW Architecture

C6000 Execute Packet

Functional Units

Speed Optimized Pipeline

- 6-stage instruction fetch/dispatch pipeline
- 5-stage load pipeline
- 2-stage multiply pipeline
- Allows highest DSP clock rate

Parallelism

 8 new independent instructions can always be dispatched every cycle

Excellent Compiler Target

- Deterministic order and time of execution
- Single general purpose register file
- Simple independent instructions
- No special modes or status bits

C64x VelociTI.2[™] Architecture Extension Requirements

100% Binary Compatibility with C62x

- No pipeline changes for existing instructions
- No modifications to existing opcodes

Maintain High Performance Clock Rate

- No new critical speed paths
- Minimize additional register porting

Retain compiler-friendly architecture

- Co-developed with the compiler team
- Seamlessly integrated into instruction set
- Operates on general purpose register file

Significant measurable architectural speed-up

Minimum 2x cycle speed-up across

C64x DSP Core Enhancements

Current Performance

8 Instructions/Cycle 200-300 MHz 1600-2400 MIPs 400-600 MMACs

Extends Clock Rate

Initial Devices 600-800 MHz

Increased Parallelism

- Packed Data Processing
 - Two 16-bit Multipliers per M Unit
 - Quad 8-Bit Arithmetic
 - Dual 16-bit Arithmetic

2x Register File

• 64 vs. 32 Registers

2x Data Bandwidth

64-Bit Load/Store Paths

Codesize Reduction

 Execute Packets Can Span Fetch Packets

Advanced Emulation

- C-Tools Analysis
- Real Time Data Exchange
- Run-time PC Trace

Initial Performance

Dual 64-Bit Load/Store Paths

8 Instructions/Cycle 600-800 MHz 4800-6400 MIPs 2500-3200 16-Bit MMACs 4800-6400 8-Bit MMACs

C64x VelociTI.2[™] Packed Data Processing Extensions

Instruction	Quad 8-Bit	Dual 16-Bit	Function
ADDx,SUBx	X	X	Adds/Subtracts
SADDx	X	X	Saturated Adds
MPYx,MPYx	X	X	Multiplies
DOTPx	X	X	Dot Products, (a+bj)*(c+dj)
DOTPxRx		X	Dot Products w/ Rounding
PACKx	X	X	Pack Operations
SPACKx	X	X	Saturated Pack Operations
UNPKx4	X	X	Unpack Operations
CMPx	X	X	Compares
MAXx/MINx	X	X	Max/Min Operations
SHRx2		X	Shifts
ABS2		X	Absolute Value
LDNx/STNx	X	X	Non-aligned Load/Stores

C64x Non-Aligned Memory Accesses

One 64-bit Non-Aligned Load or Store Per Cycle

- Uses load/store paths for both D units
- Accesses correct 64-bit from 128-bit access
- Remaining D unit still available for non-memory instructions

Available with Non-Scaled or Scaled Offset

- Non-scaled offset provides access granularity for convolutiontype operations
- Scaled offset by data size in bytes for compiler use in loop unrolling

Key to Compiler Optimizations for Packed Data Processing

C64x VelociTI.2[™] Special Purpose Instructions

Instruction	Description	Typical Application	
BITC4	Quad 8-Bit Bit Count	Machine Vision	
GMPY4	Galois Field MPY	Reed Solomon Support	
SHFL	Bit Interleaving	Convolutional Encoder	
DEAL	Bit De-interleaving	Cable Modem	
SWAP4	Byte Swap	Endian Swap	
XPNDx	Bit Expansion	Graphics	
MPYHIx, MPYLIx	Extended Precision 16x32 MPYs	Audio	
AVGx	Quad 8-Bit, Dual 16-Bit Average	Motion Compensation	
SUBABS4	Quad 8-Bit Absolute of Differences	Motion Estimation	
SSHVL, SSHVR	Signed Variable Shift	GSM	

Non-Aligned Loads & Packed Data Processing Accelerate Motion Estimation

LDNDW (Load Non-aligned Double Word)

- Accesses a double word on any byte alignment in internal memory in a single cycle
- Key to sustaining packed data processing performance in real-world algorithms

SUBABS4 (Quad Subtract and Absolute Value)

- Computes the absolute value of the difference between 4 reference frame pixels and 4 input frame pixels
- Two SUBABS4 operations can be performed each cycle

Non-Aligned Loads Enable Peak Performance

EXAMPLE

```
L 0:
  ADD
             .D2X
                        B curr mad 0.
                                            A curr mad 0,
                                                               B curr mad
 DOTPU4
             .M1
                        A err 3210 r0,
                                            A k0x01010101, A mad r0
             .M2
                        B err 7654 r3,
                                            B k0x01010101, B mad r3
 DOTPU4
                                            B_curr_mad_7,
          .S2
                        B mad r6,
 ADD
                                                               B curr mad 6
 ADD .S1X
SUBABS4 .L2
                                                               A ref d
 ADD
                       A_ref_d, B_f, A_ref_d
B_src_7654_r2, B_ref_7654_r2, B_err_7654_r2
*A_ref_d(A_p3), A_ref_7654_r3: A_ref_3210_r3
                        A ref d,
                                            B f,
 LDNDW .D1
 SUBABS4 .L1
                        A src 3210 r7,
                                            A ref 3210 r7, A err 3210 r7
```

Sustains two SUBABS4 instructions every cycle

LDNDW operations allow this code to work on reference data with any alignment

8 parallel instructions used every cycle – Sustains peak parallelism in real applications

Galois Field Multiply Streamlines Reed-Solomon Error Correction

Key Operation for Reed Solomon Forward Error Correction

 Extensively used in broadband communications including ADSL, cable modem, wireless and digital television

Both C64x[™] DSP M Units have a Galois Field Multiplier

- GMPY4 instruction performs 4 parallel operations on 8-bit packed data
- Total throughput of 8 Galois Field multiplies every cycle
- Programmable for all Galois Multiplies in fields GF(2) for i=1 to 8 using any generator polynomial

Breakthrough Performance (eliminates need for ASICs or hardware accelerators)

- Decodes a (204, 188, 8) packet in 1180 cycles
- 6 Mbits/s Reed Solomon decoding requires <0.6% of an 800 Mhz device

ALGORITHM	IMPROVEMENT/C62x™	CYCLES
Syndrome Accumulate	3.5x	470
Berlekamp-Massey	7.7x	246
Chien Search	4.8x	324
Forney	3.1x	140
TOTAĹ	4.7x	1,180

Sample Benchmark Results

	Cycle	Count	Performance	
DSP Kernels/Image Processing Kernels	C62x™	C64x™	Cycle Improvement Ratio C64x™: C62x™	Total Improvement 750 MHz C64x™ Vs 300 MHz C62x™
Correlation - 3x3	4.5	1.28	3.5x	8.8x
(8-bit)	cycles	s/pixel		Olox
FFT - Radix 4 - Complex	12.7	6.0	2.1x	5.3x
(size = N log (N)) (16-bit)	cycles	s/data		
Median Filter - 3x3	9.0	2.1	4.3x	10.7x
(8-bit)	cycles	s/pixel		10.7X
Motion Estimation - 8x8 MAD (8-bit)	0.953 cycles	0.126 s/pixel	7.6x	19.0x
Polyphase Filter - Image Scaling (8-bit)	0.77	0.33	2.3x	5.8x
	cycles/outp	out/filter tap		
Reed Solomon Decode: Syndrome Accumulation	1680	470	3.5x	8.8x
(204,188,8) Packet	cycles/	packet		
Viterbi Decode (GSM) (16 states)	38.25	14 ^Ψ	2.7x	6.8x
(10 States)	cycles/	output		

Ψ includes traceback

C64x DSP L1/L2 Cache Sustains High Clock Rate Performance

2-Level Cache Allows Single Cycle Access at 1.1 GHz

Dedicated L1s provide high clock-rate performance

128K L2 Cache Memory Configurations

Unified L2 Optimized for Streaming Data and General Purpose Code

Flexible, Programmable EDMA Maximizes Bandwidth Options

Maximizes Bandwidth Utilization

Over 2.6 Gigabytes of bandwidth Cycle-by-cycle interleaving of transfers

Maximizes Concurrency

32 Channels with up to 85 total linkable parameter sets 4 Independent priority transfer queues Scalable to support multiple peripherals

64x DSP Core Fueled by Gigabytes of Bandwidth for Ultimate Performance

Three External Buses Providing Over 1.8 Gigabytes Bandwidth

- 64-Bit EMIF for Memory
- 1 16-Bit EMIF for I/O
- 1 32-Bit HPI

Three McBSPs with 128 Channel Support

Three Timers

64x DSP Core Fueled by Gigabytes of Bandwidth for Ultimate Performance

Enhanced DMA (EDMA) — Over 2.6 Gigabytes of Sustained DMA Bandwidth

- 32-Channels
- Highly efficient transfer engine

L1/L2 Cache Architecture

Additional Peripherals Under Development

Initial Samples at 600 to 800 MHz

Software Compatible C6000™ DSP Platform Provides Range of Performance Leadership

TIME

Conclusion

TI C64x™

C6000 VelociTITM Advanced VLIW Architecture

ENABLES HIGHEST DSP CLOCK RATE

C64x VelociTI.2TM Architecture Extensions

BOOST BROADBAND COMM AND IMAGING

Packed Data Flow Support

SUSTAINS PEAK CORE PERFORMANCE

Efficient Memory and Peripheral System

MAXIMIZES SYSTEM OPTIONS

Code Compatible Roadmap

PROTECTS SOFTWARE INVESTMENT