TMS320C64x™ Architecture Extensions Boost Performance for Broadband Communications and Imaging Jeremiah Golston TMS320C64x™ DSP Applications Manager #### **Overview** - C6000 VelociTI[™] Advanced VLIW Architecture - C64x VelociTI.2[™] Architecture Extensions - Algorithm Examples and Benchmarks - Memory and Peripheral System - Code Compatible Roadmap # **C6000 VelociTI[™] Advanced VLIW Architecture** #### **C6000 Execute Packet** **Functional Units** #### **Speed Optimized Pipeline** - 6-stage instruction fetch/dispatch pipeline - 5-stage load pipeline - 2-stage multiply pipeline - Allows highest DSP clock rate #### **Parallelism** 8 new independent instructions can always be dispatched every cycle #### **Excellent Compiler Target** - Deterministic order and time of execution - Single general purpose register file - Simple independent instructions - No special modes or status bits # **C64x VelociTI.2[™] Architecture Extension Requirements** #### 100% Binary Compatibility with C62x - No pipeline changes for existing instructions - No modifications to existing opcodes #### **Maintain High Performance Clock Rate** - No new critical speed paths - Minimize additional register porting #### Retain compiler-friendly architecture - Co-developed with the compiler team - Seamlessly integrated into instruction set - Operates on general purpose register file #### Significant measurable architectural speed-up Minimum 2x cycle speed-up across #### **C64x DSP Core Enhancements** #### **Current Performance** 8 Instructions/Cycle 200-300 MHz 1600-2400 MIPs 400-600 MMACs #### **Extends Clock Rate** Initial Devices 600-800 MHz #### Increased Parallelism - Packed Data Processing - Two 16-bit Multipliers per M Unit - Quad 8-Bit Arithmetic - Dual 16-bit Arithmetic #### 2x Register File • 64 vs. 32 Registers #### 2x Data Bandwidth 64-Bit Load/Store Paths #### Codesize Reduction Execute Packets Can Span Fetch Packets #### **Advanced Emulation** - C-Tools Analysis - Real Time Data Exchange - Run-time PC Trace #### **Initial Performance** Dual 64-Bit Load/Store Paths 8 Instructions/Cycle 600-800 MHz 4800-6400 MIPs 2500-3200 16-Bit MMACs 4800-6400 8-Bit MMACs # C64x VelociTI.2[™] Packed Data Processing Extensions | Instruction | Quad
8-Bit | Dual
16-Bit | Function | |-------------|---------------|----------------|-----------------------------| | ADDx,SUBx | X | X | Adds/Subtracts | | SADDx | X | X | Saturated Adds | | MPYx,MPYx | X | X | Multiplies | | DOTPx | X | X | Dot Products, (a+bj)*(c+dj) | | DOTPxRx | | X | Dot Products w/ Rounding | | PACKx | X | X | Pack Operations | | SPACKx | X | X | Saturated Pack Operations | | UNPKx4 | X | X | Unpack Operations | | CMPx | X | X | Compares | | MAXx/MINx | X | X | Max/Min Operations | | SHRx2 | | X | Shifts | | ABS2 | | X | Absolute Value | | LDNx/STNx | X | X | Non-aligned Load/Stores | ### **C64x Non-Aligned Memory Accesses** #### One 64-bit Non-Aligned Load or Store Per Cycle - Uses load/store paths for both D units - Accesses correct 64-bit from 128-bit access - Remaining D unit still available for non-memory instructions #### Available with Non-Scaled or Scaled Offset - Non-scaled offset provides access granularity for convolutiontype operations - Scaled offset by data size in bytes for compiler use in loop unrolling ### **Key to Compiler Optimizations for Packed Data Processing** # **C64x VelociTI.2[™] Special Purpose Instructions** | Instruction | Description | Typical Application | | |----------------|------------------------------------|-----------------------|--| | BITC4 | Quad 8-Bit Bit Count | Machine Vision | | | GMPY4 | Galois Field MPY | Reed Solomon Support | | | SHFL | Bit Interleaving | Convolutional Encoder | | | DEAL | Bit De-interleaving | Cable Modem | | | SWAP4 | Byte Swap | Endian Swap | | | XPNDx | Bit Expansion | Graphics | | | MPYHIx, MPYLIx | Extended Precision 16x32 MPYs | Audio | | | AVGx | Quad 8-Bit, Dual 16-Bit Average | Motion Compensation | | | SUBABS4 | Quad 8-Bit Absolute of Differences | Motion Estimation | | | SSHVL, SSHVR | Signed Variable Shift | GSM | | ### Non-Aligned Loads & Packed Data Processing Accelerate Motion Estimation #### **LDNDW** (Load Non-aligned Double Word) - Accesses a double word on any byte alignment in internal memory in a single cycle - Key to sustaining packed data processing performance in real-world algorithms ### SUBABS4 (Quad Subtract and Absolute Value) - Computes the absolute value of the difference between 4 reference frame pixels and 4 input frame pixels - Two SUBABS4 operations can be performed each cycle ## Non-Aligned Loads Enable Peak Performance #### **EXAMPLE** ``` L 0: ADD .D2X B curr mad 0. A curr mad 0, B curr mad DOTPU4 .M1 A err 3210 r0, A k0x01010101, A mad r0 .M2 B err 7654 r3, B k0x01010101, B mad r3 DOTPU4 B_curr_mad_7, .S2 B mad r6, ADD B curr mad 6 ADD .S1X SUBABS4 .L2 A ref d ADD A_ref_d, B_f, A_ref_d B_src_7654_r2, B_ref_7654_r2, B_err_7654_r2 *A_ref_d(A_p3), A_ref_7654_r3: A_ref_3210_r3 A ref d, B f, LDNDW .D1 SUBABS4 .L1 A src 3210 r7, A ref 3210 r7, A err 3210 r7 ``` #### Sustains two SUBABS4 instructions every cycle LDNDW operations allow this code to work on reference data with any alignment 8 parallel instructions used every cycle – Sustains peak parallelism in real applications ## Galois Field Multiply Streamlines Reed-Solomon Error Correction #### **Key Operation for Reed Solomon Forward Error Correction** Extensively used in broadband communications including ADSL, cable modem, wireless and digital television #### Both C64x[™] DSP M Units have a Galois Field Multiplier - GMPY4 instruction performs 4 parallel operations on 8-bit packed data - Total throughput of 8 Galois Field multiplies every cycle - Programmable for all Galois Multiplies in fields GF(2) for i=1 to 8 using any generator polynomial ### Breakthrough Performance (eliminates need for ASICs or hardware accelerators) - Decodes a (204, 188, 8) packet in 1180 cycles - 6 Mbits/s Reed Solomon decoding requires <0.6% of an 800 Mhz device | ALGORITHM | IMPROVEMENT/C62x™ | CYCLES | |---------------------|-------------------|--------| | Syndrome Accumulate | 3.5x | 470 | | Berlekamp-Massey | 7.7x | 246 | | Chien Search | 4.8x | 324 | | Forney | 3.1x | 140 | | TOTAĹ | 4.7x | 1,180 | ### **Sample Benchmark Results** | | Cycle | Count | Performance | | |---|--------------|------------------------|---|--| | DSP Kernels/Image
Processing Kernels | C62x™ | C64x™ | Cycle
Improvement
Ratio
C64x™: C62x™ | Total
Improvement
750 MHz C64x™
Vs
300 MHz C62x™ | | Correlation - 3x3 | 4.5 | 1.28 | 3.5x | 8.8x | | (8-bit) | cycles | s/pixel | | Olox | | FFT - Radix 4 - Complex | 12.7 | 6.0 | 2.1x | 5.3x | | (size = N log (N)) (16-bit) | cycles | s/data | | | | Median Filter - 3x3 | 9.0 | 2.1 | 4.3x | 10.7x | | (8-bit) | cycles | s/pixel | | 10.7X | | Motion Estimation - 8x8 MAD (8-bit) | 0.953 cycles | 0.126
s/pixel | 7.6x | 19.0x | | Polyphase Filter -
Image Scaling (8-bit) | 0.77 | 0.33 | 2.3x | 5.8x | | | cycles/outp | out/filter tap | | | | Reed Solomon Decode: Syndrome Accumulation | 1680 | 470 | 3.5x | 8.8x | | (204,188,8) Packet | cycles/ | packet | | | | Viterbi Decode (GSM) (16 states) | 38.25 | 14 ^Ψ | 2.7x | 6.8x | | (10 States) | cycles/ | output | | | **Ψ** includes traceback # C64x DSP L1/L2 Cache Sustains High Clock Rate Performance 2-Level Cache Allows Single Cycle Access at 1.1 GHz Dedicated L1s provide high clock-rate performance **128K L2 Cache Memory Configurations** **Unified L2 Optimized for Streaming Data and General Purpose Code** ## Flexible, Programmable EDMA Maximizes Bandwidth Options Maximizes Bandwidth Utilization Over 2.6 Gigabytes of bandwidth Cycle-by-cycle interleaving of transfers **Maximizes Concurrency** 32 Channels with up to 85 total linkable parameter sets 4 Independent priority transfer queues Scalable to support multiple peripherals ## 64x DSP Core Fueled by Gigabytes of Bandwidth for Ultimate Performance # Three External Buses Providing Over 1.8 Gigabytes Bandwidth - 64-Bit EMIF for Memory - 1 16-Bit EMIF for I/O - 1 32-Bit HPI Three McBSPs with 128 Channel Support **Three Timers** ## 64x DSP Core Fueled by Gigabytes of Bandwidth for Ultimate Performance Enhanced DMA (EDMA) — Over 2.6 Gigabytes of Sustained DMA Bandwidth - 32-Channels - Highly efficient transfer engine L1/L2 Cache Architecture Additional Peripherals Under Development Initial Samples at 600 to 800 MHz ## Software Compatible C6000™ DSP Platform Provides Range of Performance Leadership **TIME** #### Conclusion TI C64x™ C6000 VelociTITM Advanced VLIW Architecture ENABLES HIGHEST DSP CLOCK RATE C64x VelociTI.2TM Architecture Extensions BOOST BROADBAND COMM AND IMAGING Packed Data Flow Support SUSTAINS PEAK CORE PERFORMANCE Efficient Memory and Peripheral System MAXIMIZES SYSTEM OPTIONS Code Compatible Roadmap PROTECTS SOFTWARE INVESTMENT