

Quintessence Architectures, Inc.

Architecting High-Performance SoC Video Processors

Sorin C. Cismas

http://www.quarc.com

Outline

- Digital Video and the SoC Challenges
- Architecture, Design Methodology and Tools
- Videris[™] HD MPEG2 4:2:2@HL Video Decoder
 - Multi-Threaded MPEG Decoder
 - Fused Multiply/Add/Subtract DCT
 - Tile based Super-Scalar Memory Controller
 - Videris[™] HD Statistics
- Conclusions

Outline

- Digital Video and the SoC Challenges
- Architecture, Design Methodology and Tools
- Videris[™] HD MPEG2 4:2:2@HL Video Decoder
 - Multi-Threaded MPEG Decoder
 - Fused Multiply/Add/Subtract DCT
 - Tile based Super-Scalar Memory Controller
 - − ViderisTM HD Statistics
- Conclusions

More Performance @ Low Power

- Higher Resolution, Higher Bitrate Video quality
 - Video CD 360 x 240 @ 1-3 Mbit/sec.
 - DVD 720 x 480 @ 4-10 Mbit/sec.
 - HDTV 1920 x 1080 @ 20-40 Mbit/sec.
 - Digital Cinema 4096 x 3072 @ ??? Mbit/sec.
- Multiple Streams, Multiple Standards Flexibility
 - MPEG2 (DirecTV, DVD, DVB, ATSC, ISDB)
 - MPEG4, J2K, MJ2K
 - JPEG, DV
- Wireless and Portable Low power
 - Limited and variable bandwidth
 - Scalable performance

SoC (Systems not Chips)

- System = Hardware + Software + Application
- Hardware/Software partitioning is crucial
- The SoC Challenges
 - reuse and easy integration
 - faster time-to-market <u>and</u> smaller circuit geometry
 - high performance <u>and</u> low power
 - all of the above @ low cost
- The Solution Innovative Architectures, Design Methodologies and Tools
 - they will drive the SoC revolution
 - handcrafting to squeeze the last picoseconds and the last thousands gates will be a thing of the past

Outline

- Digital Video and the SoC Challenges
- Architecture, Design Methodology and Tools
- Videris[™] HD MPEG2 4:2:2@HL Video Decoder
 - Multi-Threaded MPEG Decoder
 - Fused Multiply/Add/Subtract DCT
 - Tile based Super-Scalar Memory Controller
 - Videris[™] HD Statistics
- Conclusions

QuArc Architecture and Methodology

"divide et impera"

- Functional partitioning in manageable objects
- Well defined interfaces
- Independently testable objects, easy to integrate, and reuse
- Automate most of the design, verification, and synthesis process
- Enable engineers to work on the creative and fun stuff

Key Features

- Encapsulates algorithms in self-contained data-driven objects
- No need for master controller or scheduler
- Synchronous but self-timed (variable schedule, elastic pipelines)
- Adapts to instantaneous variations in processing load
- Split memory transactions
- Stall tolerant works well in systems with shared memory
- Minimal interfaces to simplify the wiring complexity

QuArc Objects

- Any design is a collection of Objects
 - Atoms: leaf objects (indivisible)
 - two global signals: clock and reset
 - one or more Input Interfaces
 - one or more Output Interfaces
 - Molecules: collection of Atoms and/or Molecules
 - Interfaces:

QuArc Interfaces

- Minimal set of signals
- Synchronous and uni-directional
- One transmitter and one or more receivers
- Sustained one token/cycle throughput
- Token bus:
 - At the physical level, like any other data bus
 - At the logical level, equivalent to a C-language data structure
 - Can be a collection of sub-busses, each with its own syntax
- Handshake signals:
 - Simple rdy/req handshake protocol
 - One rdy/req pair for each receiver
 - Data is handed over when both rdy and req are asserted
 - Transmitter and Receivers can stall the transaction in any cycle

QuArc Pipestages (Qpipes)

- Contains one or more registers, sometimes a memory
- Has it's own controller that keeps track of how many tokens are in the pipeline
- Atoms knows when valid data is in the pipeline
- Atoms can independently shut down the clock to save power
- Library of Qpipes
 - Hides variable schedule complexity
 - Simplifies design task
 - Designers can focus on algorithms, not on low level control

QuArc Design Language

- Every Object has a .qdl file (Object Spec.)
 - What the Object is
 - How to use other Objects to build a system
- QDL files have four parts
 - Parameters customizes Atoms and Interfaces based on the system requirements
 - Interfaces describes their properties
 - Input/Output
 - Interface Type (Class)
 - the syntax is described in a QDL library
 - only Interfaces of the same type can be connected together
 - Prefix to uniquely identify an Interface if an Object has more than one of the same Type
 - Instantiations (for Molecules only)
 - Register Description (for Atoms only)

Automatic Configuration Tool

Design Style Rules for Easy Design Reuse

- Positive-edge triggered flip-flops, no latches
- Single clock
- Reset can be synchronous or asynchronous
- Control registers are always reset
- Low input set-up time (<25% of the cycle time)
- Low output delay time (<25% of the cycle time)
- Output Data comes directly from registers
- Input Data goes directly to registers
- No combinational paths from inputs to outputs
- Simple internal RAM (1-port or 1 read/1 write port)

Outline

- Digital Video and the SoC Challenges
- Architecture, Design Methodology and Tools
- Videris[™] HD MPEG2 4:2:2@HL Video Decoder
 - Multi-Threaded MPEG Decoder
 - Fused Multiply/Add/Subtract DCT
 - Tile based Super-Scalar Memory Controller
 - Videris[™] HD Statistics
- Conclusions

MPEG2 4:2:2@HL Video Decoder

- All non-scalable profiles at all levels
- Dedicated, hard-wired units to guarantee high-performance at low power and low cost
- High level decisions and error recovery is under software control (few MIPS and not real-time critical)

Multithreaded MPEG Decoder

- Video processors will evolve from dedicated, one-application-at-a-time to multithreading
 - In the '90^{ties}, single stream decoders
 - Context switching and multithreading is a must in future visual communication and entertainment devices

MPEG multithreading

- Most HD decoders have the processing power to decode several SD bitstreams. After a picture is completely decoded, a new picture from a different bitstream can be decoded, but context switching takes far to many cycles and reduces performance
- Videris[™] HD can process up to 16 bitstreams simultaneously, each with its own different bitrate, resolution and frame rate, without any penalty in stall cycles
- This is an important feature when many and relatively small MPEG textures need to be mapped on objects, as in games, multimedia and visual communications

Video Context Switching

- Context stored in special QuArc Pipestages distributed over the whole design
 - too much overhead to store/retrieve it to/from memory
 - very long pipeline compared to general purpose processors
 - context switch happens at different times in different objects
 - at any time, Videris[™] HD can be processing several contexts
- Context switching is supported in QDL
- ACT configures the QuArc Pipestages for the requested number of contexts
- Independent Bit Buffer Control and Decode/Display Interlock for each bitstream

Multiply/Add/Subtract IDCT Algorithm

- Based on a DCT Algorithm by Elliot Linzer and Ephraim Feig (26 Multiply/Add)
- Our Algorithm (16 Multiply/Add/Subtract)

Multiply/Add/Subtract IDCT Architecture

Multiply/Add/Subtract IDCT Features

- Minimal hardware: 2 MAS, 9 registers and 5 muxes
- Throughput: 1 DCT coefficient/cycle no stall cycles (94MHz for HD)
- Latency: 12 cycles 2 or 3 IDCTs are processed at any time
- Narrow busses: 16 bits on the interfaces, 18 bits internally
- HD requires two IDCTs plus a 64 x 16 transpose memory
- Exceeds IEEE 1180 requirements
- Extra bit in data path to guard against large quantization noise

Precision	IEEE 1180	QuArc
Peak Error	1	1
Pixel Mean Error	0.015	0.0043
Overall Mean Error	0.0015	0.0001
Pixel Mean Square Error	0.06	0.0226
Overall Mean Square Error	0.02	0.0185

Memory Bandwidth

- Biggest limitation for high performance (microprocessors, 3D and video)
- Higher memory density makes them cheaper and deeper, but not faster
- Shared memory is a must for SoC
- MMU becomes the bottleneck that distributes bandwidth to many clients
- Caches do not necessarily help for video (random accesses for small blocks of data)
- Tile based memory organization, multiple banks and memory transactions reordering do help

Microprocessor vs. SDRAM Pipeline

IF

Microprocessor Pipeline

- Branches
- Load delay

SDRAM Pipeline

- Variable length
- Shared command bus
- Write to Read penalty = CAS Latency

Super-Scalar Memory Controller

 Complex Memory Transactions (array with implicit or variable stride) are translated to Simple Slice Instructions (access to consecutive addresses within the same bank and page)

Pipeline Operation

- Out of Order Commands: T₂ (Slice 5) is executed before T₁ (Slice 4)
- Stall cycle can be eliminated with Out of Order Data (requires on-chip memory to reorder the data for the clients)

Memory Controller Performance

- 90 94% memory utilization
- Needs memory transaction size longer than t_{RC} (Active to Active command period)
- MPEG prediction size is 3 x 9, 3 x 8, 3 x 5, and 3 x 4 words on a 64-bit bus
- This high efficiency enables Videris HD to use a 32-bit SDRAM or 16-bit DDR at 133MHz for HDTV
- 93 96% memory utilization with Out of Order Data
 - on-chip memories are needed for both read and write to reorder the data for the clients)
 - longer latencies

Videris[™] HD Statistics

Videris™ HD Object	Base Area	Inc. Area	Base RAM	Inc. RAM
Video Parser	0.137 mm ²	0.004 mm ²	128 bytes	128 bytes
Inverse Quantizer	0.073 mm ²	0.005 mm ²	96 bytes	
IDCT	0.195 mm ²		128 bytes	
Motion Vectors	0.087 mm ²	0.005 mm ²		
Motion Compensation	0.148 mm ²		432 bytes	
Bit Buffer Control	0.154 mm ²	0.019 mm ²	512 bytes	
Decode/Display Interlock	0.045 mm ²	0.003 mm ²		
Videris [™] HD Total	0.839 mm ²	0.035 mm²	1,296 bytes	128 bytes
Memory Management Unit	0.340 mm ²	0.030 mm ²	1,280 bytes	
SDRAM Controller	0.193 mm ²			
Videris [™] HD + Mem. Cntr	1.372 mm ²	0.065 mm²	2,576 bytes	128 bytes

• Logic Area based on TSMC 0.18um, 150MHz, worst-case operating conditions (V, T, P)

- up to 200MHz worst-case operating conditions (logic area increases by approx. 20%)
- Base Area (routing overhead not included) and Base RAM are for one context
- For every additional context, add Inc. Area and Inc. RAM
- Total size, including routing overhead for one HD + two SD (or eight SD) is 3-4 mm²

Outline

- Digital Video and the SoC Challenges
- Architecture, Design Methodology and Tools
- Videris[™] HD MPEG2 4:2:2@HL Video Decoder
 - Multi-Threaded MPEG Decoder
 - Fused Multiply/Add/Subtract DCT
 - Tile based Super-Scalar Memory Controller
 - − ViderisTM HD Statistics
- Conclusions

Conclusions

- Pure Hardware or pure Software are not the right answer for the future visual communication and entertainment devices
- SoC is a big challenge for all semiconductor companies
- Moore's Law can not be sustained just by the future progress in semiconductor processes
- Architecture, Design Methodology and Tools will drive the semiconductor industry

