

The SB-1[™] Core: A High Performance, Low Power MIPS64[™] Implementation

David Kruckemyer Principal Engineer SiByte, Inc.

Hot Chips 12 August 15, 2000 www.sibyte.com

SiByte Background

- Semiconductor Supplier for Networking and Communications Infrastructure
 - High Performance, Low Power, Integrated SOC Solutions
- World's best design capabilities for High Performance, Low Power VLSI
 - Processor, System, and Software Design Experience
- Marketing and sales expertise in embedded networking and communications markets

SB-1 Design Goals

Industry Standard ISA

- Existing Tool and Application Support

Server-class Performance

- Highest Embedded Processor Performance

Embedded-class Power Consumption

- Highest Performance/Watt in its Performance Class

Chip Multiprocessor (CMP) Support

- Full MP Coherency
- High Bandwidth Bus Interface
- Scalable Performance

Design Re-use and Flexibility

Building block for multiple generations of SiByte SOCs

SB-1 High Level Spec

ISA	MIPS64, MIPS-3D TM
Frequency	600MHz – 1GHz
Microarchitecture	In-order Quad Issue
	(Dual ALU/FP, Dual Memory)
Branch Prediction	BHT, JRC, RAS
Instruction Cache	32KB, 4-Way Set Associative
Data Cache	32KB, 4-Way Set Associative
TLB	64 x 2 Entries
MP Support	Fully Coherent MESI Protocol
Process Technology	0.15 micron
Operating Voltage	1.2 Volts
Power Consumption	~2.5 Watts at 1GHz
Estimated Die Area	~25mm ²

SB-1 MIPS64 ISA

- Unified 64/32-bit Application ISA
- Embedded Application Instructions
- Standardized Privileged Resource Architecture
- Paired Single Floating Point

MIPS-3D

- 3D-Graphics Instructions
- RECIP/RECIPSQRT Approximations
- Specialized Branches

SB-1 Block Diagram

SB-1 Instruction Fetch

Four Instructions Fetched Per Cycle

Advanced Branch Prediction

- 4K-entry Gshare Direction Predictor
- 64-entry Indirect Jump Cache
- 8-entry Return Address Stack

Up to Two Branch Predictions each Instruction Fetch

SB-1 Decode/Issue

Instruction Queue

- Stores up to 24 decoded instructions
- Decouples Fetch engine from Issue stalls

Maximum of Four Instructions Issued

- Mix of two Integer or FP instructions
- Mix of two Load or Store instructions

IQ Serves as a Replay Buffer

SB-1 Load/Store Unit

Two Loads/Stores Per Cycle

Simple 64-bit ALU

- Adds, Subtracts, and Logical Instructions

Non-Blocking Data Cache

- 8 Outstanding Cacheline Misses
- Request Merging

Full Prefetch Support

SB-1 Integer Unit

Two 64-bit ALU Execute Units

- 1-Cycle Execution Latency for Most Instructions
- Branch Evaluate Unit
- Integer Multiply/Divide Unit
 - Fully-Pipelined, 3-Cycle MADD
 - Complete 64-bit Integer Multiply and Divide

4 BOPS Peak

SB-1 Floating Point Unit

Two Double Precision FP Execute Units

- 4-Cycle Execution Latency
- Fully-Pipelined
- IEEE 754 Compliant
- Paired Single Instruction Support
- 4 SP MADDs/Cycle, 8 SP GFLOPS

SB-1 Pipeline Highlights

Load Data Forwarding

- Zero Cycle Load-to-Use Delay
- High Performance
- Simple Implementation

Simple Load/Store Unit ALU

- Early Address Generation for Loads and Stores
- Dependent Integer Operations may be issued simultaneously

Zero Cycle Load-to-Use

SB-1 Performance/Power

Server-class Microprocessor Performance at Embedded Processor Power

Dhrystone 2.1 MIPS> 2000 MIPS, > 800 MIPS/WattPeak Integer Ops4 Ops/Cycle, 4 BOPS PeakPeak FP Ops8 Ops/Cycle, 8 GFLOPS Peak

SB-1 Low Power Design

- Low V_{dd}
 - -1.2 Volts
 - -36% Power Savings vs. 1.5 Volts
- Extensive Use of Clock-Gating
 - -30% Power Savings
- Flip-Flop-Based Design
 - Saves Power vs. Latch-based Designs
 - Estimated 10% Power Savings
- Mostly Static Logic
 - Selective Use of Dynamic Logic (5 10% Savings)
- Optimized Layout

SB-1 MP Support

CPU 0

CPU N

IO

Bridge 0

Address

Data

L2 Cache

CMP-Ready Core

- Fast, Fully-Coherent,
 Split Transaction,
 MP Bus Interface
- Total Bus BW:
 - 16 GB/Sec
- Load Linked, Store Conditional Support
- Snoop Support
 - Duplicate L1 Tags

Memory

Control

IO

Bridge N

SB-1 Summary

High Performance MIPS64 CPU Core > 2000 Dhrystone 2.1 MIPS

8 GFLOPS Peak FP Performance

✓ Low Power in a Small Die Area

~2.5 Watts at 1GHz in 25mm²

> 800 MIPS/Watt

Support for Chip Multiprocessing Full MP Coherency with Snoop Tags 16 GB/Sec Bus Bandwidth

Foundation for Multiple SOCs

