
MAJCTM: An Architecture for

the New Millennium

Marc Tremblay

Chief Architect
Sun Microsystems Inc.

Hot Chips 1999

Sun Microsystems/MT 2

Microprocessor Architecture for

Java Computing

Four-year program to develop a new microprocessor

family based on the following four assumptions:

1) Current and future compute tasks are/will be very

different than benchmarks used to develop CISC

and RISC processors

■ Algorithms - compute intensive, ratio of compute

operations to memory operations is much higher

■ e.g.: IIR filters, VOIP, MPEG2: 3-16 ops/flops per memory op.

■ Data types - digitized analog signals, lots of data

■ I/O - streaming, mostly linearly

Sun Microsystems/MT 3

Assumptions (continued)

2) The dominant platform for networked devices,

networked computers, terminals, application

servers, etc. will be the JavaTM platform.

■ > 1 million Java developers, 72% of Fortune 1000

companies using Java (80% client, 100% server) by

2000, present in Navigator, Explorer, AOL browser,

PalmPilots, 2-way pagers, cellular phones, etc.

■ Multi-threaded applications

■ Observing Java applications with 10’s and 100’s of threads

■ Run time optimizations is the prime focus

■ Architecture must consider virtual functions, exception

model, garbage collection, etc.

Sun Microsystems/MT 4

Assumptions (continued)

3) Parallelism is available at

multiple levels

■ ILP improves through:

■ Data and control speculation

■ non-faulting loads, explicit

predication, and traditional methods

■ Branch filtering, prefetching, etc.

■ Steering loads (indicate where to

cache, coherency info, etc.)

■ But… much more performance

available at the thread level

Bit

SIMD

ILP

Thread

MP

Sun Microsystems/MT 5

Assumptions (continued)

4) Companies building a portfolio of IP-blocks.

Design the architecture for:

■ System-On-a-Chip (SOC)

■ Multi-Processor System-On-a-Chip (MPSOC)

Sun Microsystems/MT 6

Presentation

■ The ISA

■ The thread model

■ Implementation direction

■ System-On-a-chip (SOC),

■ Multi-Processor System-On-a-Chip (MPSOC)

■ Modularity and scalability

■ Conclusion

Sun Microsystems/MT 7

128-bit VLIW Instruction Packets

SU0
SU1 SU2

SU3

00 = 1 SU (Super Unit)

01 = 2 SUs

10 = 3 SUs

11 = 4 SUs

header

32 bits 32 bits 32 bits 32 bits

rd rs3 rs1 rs2opcode

4 bits 7 bits 7 bits 7 bits 7 bits

•opcodes available for 4-register specifier instructions

•use “rd” for more opcode bits for other instructions

Sun Microsystems/MT 8

Important Aspects of the ISA

■ Maximum of four sub-instructions per cycle per CPU

■ Diminishing ILP improvement for general purpose code

and growing impact on cycle time beyond four-issue

■ Exploit parallelism at a higher level

■ No interlock mandated at the architecture level

■ Applies for both intra- and inter-group dependences

■ Instructions with non-deterministic latencies (e.g.

cacheable loads) can be scoreboarded

■ Opcode space for slot 2, 3, and 4 is identical
■ No steering needed

■ Slot 1 is mapped onto a quadrant of the same space

Sun Microsystems/MT 9

Instruction-Slice Architecture

■ Maximize functionality but minimize the number of
functional units

■ Implementation typically has 1 functional unit for first slot
and another one (replicated twice) for the 3 other slots

■ Design a slice with its own register file, local control
and state and local wiring

■ Step-and-repeat design process

■ Facilitates compiler scheduling, instruction routing (no
large template), and reduces wiring drastically

■ Leads to unified register file and data-type agnostic
functional units (high efficiency of compute structures)

Sun Microsystems/MT 10

Flexibility

■ Implementation can be 1-, 2-, 3-, or 4-issue

■ All from mostly the same full custom design

SU1

decode
distributed

control
distributed

state

register
file

compute
structures

SU2

decode
distributed

control
distributed

state

register
file

compute
structures

SU3

decode
distributed

control
distributed

state

register
file

compute
structures

SU4

decode
distributed

control
distributed

state

register
file

compute
structures

VLIW Packet

Sun Microsystems/MT 11

Large Unified Register File

■ Integer, fixed-point, floating-point data co-exist

■ Locals: accessible only from the associated functional unit (slice)

■ Globals: shared by all slices

■ Delimiter: partitions locals and globals
■ e.g.: 64 globals + (4 * 64 locals) = 320 registers

■ e.g.: 96 globals + (4 * 32 locals) = 224 registers

128
specifiers

Locals1 Locals2 Locals3 Locals4

Globals

delimiter

Sun Microsystems/MT 12

Digital Data Types

■ 16-bit

■ Short integers (e.g. pixels, speech data, general purpose)

■ Fixed S.15, S2.13 (e.g. speech data, graphics)

■ With/without saturation, various saturation modes

■ 32-bit

■ Integers, some with saturation

■ Floats (e.g. digital communication, graphics, audio data)

■ 64-bit

■ Long integers, double floats (general purpose)

Limited 8-bit Support (for auditory, visual distance measures)

Sun Microsystems/MT 13

DSP and Floating-Point

■ True multiply-add, dot-add, dot-sub, etc.

■ bit-extract, byte-shuffle, leading-one, etc.

■ Interval arithmetic

■ directed rounding

■ min and max

■ pick_conditional, move_conditional

■ Proper data types and saturation modes

■ All of the above available and controllable for

each functional unit

■ e.g. 3 multiply-add can be done per cycle per CPU

Sun Microsystems/MT 14

Thread Model

■ Architecture supports:

■ Multiple independent processes per chip

■ Servers, multiple JVMs

■ Independent threads in the same address space

■ Multi-threaded applications, libraries, system software, GC, JIT

■ Threads sharing data

■ Focus is on very tightly-coupled CPUs

■ Space-Time Computing (STC) for the JavaTM platform

■ Vertical multithreading

Sun Microsystems/MT 15

Key Java Properties for
Thread-Level Parallelism (TLP)

■ Object-oriented nature of the language

■ Gosling property of bytecodes

■ Pass by value semantic of Java for primitive types

■ Method communication limited to the heap and

return values

=> stack values after execution of a void method is

known at the start of the next method

■ Specific Java bytecodes access objects

=> Software filtering of instructions to watch

Sun Microsystems/MT 16

Space-Time Computing (STC)

■ Speculative threads operate in:

■ a different space - the speculative heap

■ a different time - future time, in which objects are still

unborn with respect to the head thread

■ Speculative threads interact often given that they

share common objects that do not need to be

replicated

■ Versioning of objects is done in a separate space

which is cached locally

Sun Microsystems/MT 17

Space Time Computing in MAJC

Joins: collapsing of dimensions
■ heap merging

■ new head thread

{…

}

Method A

{…

}

Method B

{…

}

Method C

{…

}

Method A {…

}

Method B {…

}

Method C

TimeCPU1 CPU2 CPU3

A: head thread

B, C, …: speculative threads

■ operate in their own space

■ detect RAW, WAW violations

■ software rollback:

■ garbage collect speculative heaps

STC

Sun Microsystems/MT 18

MAJC and STC

■ MPSOC allows fast object sharing

■ Very tightly-coupled architecture

■ Very fast coherency bandwidth

■ Fast thread synchronization

=> A few cycles (vs. 100 for traditional MPs)

■ Fast thread control mechanism

■ Independent of memory access instructions

■ Special instructions for STC

■ Relaxed Memory Ordering (only!)

■ Results given during presentation

Sun Microsystems/MT 19

 Vertical Multi-Threading

■ Throughput computing (vs. only latency computing)

■ Cache misses typically cost 75-100 cycles (to DRAM)

■ Example: 5% miss, for 100 instructions

■ hits run in 1 cycle: 95 cycles

■ misses run in 75 cycles: 5*75 = 375 cycles

■ utilization around 20%
time

= processor computing

= processor idle

Sun Microsystems/MT 20

Vertical Multithreading
Time

Thread 1

Thread 2

Thread 3

Thread 4

Current processors:

MAJC implementations:

Idle time

DRAM access DRAM access DRAM access

idle idle idle

idle

• Switch thread as soon as a
 cache miss occurs
• Maintain state for 4 running
 threads
• Thread priority allows for
 running one thread without penalty

Sun Microsystems/MT 21

MAJC Support for Vertical
Multi-threading

■ Special instructions

■ Large unified register file

■ Can be partitioned into groups of registers

■ Each group can be “enabled” for each thread

■ Reads and writes from/to groups are monitored

■ Vertical state

■ Few centralized control registers to keep track of

Sun Microsystems/MT 22

Implementation Direction:
System-On-a-Chip (SOC)

■ Architecture allows the integration of IP blocks:

■ e.g. I/O controllers (PCI, 1394, USB, etc.)

■ Memory controllers (DRDRAMs, SDRAMs)

■ Compute blocks (Graphics pre- and post-processors,

mixed-logic blocks for QAM, QPSK, etc.)

■ Multiple levels of caches

■ How?

■ Fast crossbar switch, running at processor speed,

connecting CPU’s with blocks

■ Handshake protocol allows interface flexibility

■ Asynchronous interfaces for different clock speed I/O’s

Sun Microsystems/MT 23

Pluggable IP Modules

MAJC

CPU

Memory controller

DMA controller

ADSL Block

L2-cache

PCI controller

USB controller

Other IP Blocks

fast
crossbar
switch

swappable

I/O buffers

chip

Sun Microsystems/MT 24

Multi-Processor
System-On-a-Chip (MPSOC)

■ Very tightly-coupled CPUs residing on same die

■ CPUs share first-level cache or

■ CPUs have a fast coherency protocol (a few cycles)

=> enables new levels of performance

■ Limit complexity of each CPU (e.g. issue-width)

■ Limit hardware coherency domain to one die

■ Scaleable communication protocol between CPUs

Sun Microsystems/MT 25

MPSOC - Implementation Example

CPU1 CPU2D$

Other
Blocks

fast cross-calls

Sun Microsystems/MT 26

Modularity and Scalability

■ Modularity

■ Instruction-slice architecture

■ Step-and-repeat full custom design

■ Handshake protocols

■ Asynchronous interfaces

■ Scalability

■ Variable issue-width: 1, 2, 3, 4

■ Variable register file size: 32, 64, …, 512

■ Datapath and address space: 32, 64

■ Number of processing units per die: 1, 2, …, 1024

Sun Microsystems/MT 27

Conclusion

■ Not having binary compatibility (legacy)

requirements opens the door for innovation

■ A new architecture should:

■ Address parallelism at multiple levels

■ Allow fast clock implementations without thousand-

people-year efforts

■ Reach millions of programmers through the JavaTM

platform and API’s

■ An architecture is only as good as its

implementations, stay tuned for chip disclosures

