MAJC™: An Architecture for
the New Millennium

Marc Tremblay
Chief Architect

Sun Microsystems Inc.

Hot Chips 1999

Microprocessor Architecture for
Java Computing

Four-year program to develop a new microprocessor
family based on the following four assumptions:

1) Current and future compute tasks are/will be very
different than benchmarks used to develop CISC
and RISC processors

m Algorithms - compute intensive, ratio of compute
operations to memory operations 1s much higher
m c.g.: [IR filters, VOIP, MPEG2: 3-16 ops/flops per memory op.

m Data types - digitized analog signals, lots of data
m /O - streaming, mostly linearly

Sun Microsystems/MT

Assumptions (continued)

2) The dominant platform for networked devices,
networked computers, terminals, application
servers, etc. will be the Java™ platform.

m > | million Java developers, 72% of Fortune 1000
companies using Java (80% client, 100% server) by
2000, present in Navigator, Explorer, AOL browser,
PalmPilots, 2-way pagers, cellular phones, etc.

m Multi-threaded applications
m Observing Java applications with 10’s and 100’s of threads

m Run time optimizations is the prime focus

m Architecture must consider virtual functions, exception
model, garbage collection, etc.

Sun Microsystems/MT

Assumptions (continued)

3) Parallelism 1s available at

multiple levels

m ILP improves through: MP
m Data and control speculation Thread
m non-faulting loads, explicit
predication, and traditional methods ILP

m Branch filtering, prefetching, etc. SIMD
m Steering loads (indicate where to .
Bit

cache, coherency info, etc.)

m But... much more performance
available at the thread level

Sun Microsystems/MT

Sun

Assumptions (continued)

4) Companies building a portfolio of IP-blocks.
Design the architecture for:
m System-On-a-Chip (SOC)
m Multi-Processor System-On-a-Chip (MPSOC)

Microsystems/MT

Presentation

m The ISA

m The thread model

m Implementation direction
m System-On-a-chip (SOC),
m Multi-Processor System-On-a-Chip (MPSOC)

m Modularity and scalability

m Conclusion

Sun Microsystems/MT

128-bit VLIW Instruction Packets

<« 32 bits >< 32 bits >< 32 bits >< 32 bits——>
SU, Su, su, SU,
lheader
00=1SU (Super Unit) l
01 =2 SUs
10 = 3 SUs <— 4bits —>»€— 7bits —>€— 7bits —»€— 7bits —>€— 7bits —>
11 =4 SUs

opcode

rd

rs3

rsi

rs2

i

eopcodes available for 4-register specifier instructions
euse “rd” for more opcode bits for other instructions

Sun Microsystems/MT

Important Aspects of the ISA

s Maximum of four sub-instructions per cycle per CPU

m Diminishing ILP improvement for general purpose code
and growing impact on cycle time beyond four-issue

m Exploit parallelism at a higher level

m No interlock mandated at the architecture level
m Applies for both intra- and inter-group dependences

m Instructions with non-deterministic latencies (e.g.
cacheable loads) can be scoreboarded

m Opcode space for slot 2, 3, and 4 1s 1dentical
m No steering needed
m Slot 1 1s mapped onto a quadrant of the same space

Sun Microsystems/MT

Instruction-Slice Architecture

m Maximize functionality but minimize the number ot
functional units

m Implementation typically has 1 functional unit for first slot
and another one (replicated twice) for the 3 other slots

m Design a slice with its own register file, local control
and state and local wiring

m Step-and-repeat design process

m Facilitates compiler scheduling, instruction routing (no
large template), and reduces wiring drastically

m [eads to unified register file and data-type agnostic
functional units (high efficiency of compute structures)

Sun Microsystems/MT

Flexibility

(VLIW Packet
SU, sU, SU,

SuU,
decode decode decode decode
distributed distributed distributed distributed
control control control control
distributed distributed distributed distributed
state state state state
register register| | register register
file file file file
compute compute compute compute
structures structures structures structures

Sun Microsystems/MT

m Implementation can be 1-, 2-, 3-, or 4-1ssue
m All from mostly the same full custom design

10

Large Unified Register File

Locals,| | Locals, | | Locals,

Locals,

delimiter——

Globals: shared by all slices

Sun Microsystems/MT

Globals

Delimiter: partitions locals and globals
m c.g.: 64 globals + (4 * 64 locals) = 320 registers
m e.g.: 96 globals + (4 * 32 locals) = 224 registers

Integer, fixed-point, floating-point data co-exist
Locals: accessible only from the associated functional unit (slice)

128
specifiers

11

Digital Data Types

m 16-bit
m Short integers (e.g. pixels, speech data, general purpose)
m Fixed S.15, S2.13 (e.g. speech data, graphics)
m With/without saturation, various saturation modes
m 32-bit
m Integers, some with saturation
m Floats (e.g. digital communication, graphics, audio data)
m 64-bit
m Long integers, double floats (general purpose)

Limited 8-bit Support (for auditory, visual distance measures)

Sun Microsystems/MT 12

DSP and Floating-Point

m True multiply-add, dot-add, dot-sub, etc.
m bit-extract, byte-shuffle, leading-one, etc.

m Interval arithmetic
m directed rounding
m min and max

m pick_conditional, move_conditional
m Proper data types and saturation modes

m All of the above available and controllable for
each functional unit

m ¢.g. 3 multiply-add can be done per cycle per CPU

Sun Microsystems/MT

13

Thread Model

m Architecture supports:

m Multiple independent processes per chip
m Servers, multiple JVMs

m Independent threads in the same address space
m Multi-threaded applications, libraries, system software, GC, JIT

m Threads sharing data
m Focus is on very tightly-coupled CPUs

m Space-Time Computing (STC) for the Java™ platform
m Vertical multithreading

Sun Microsystems/MT

14

Sun

Key Java Properties for

Thread-Level Parallelism (TLP)

m Object-oriented nature of the language
m Gosling property of bytecodes
m Pass by value semantic of Java for primitive types

m Method communication limited to the heap and
return values

=> stack values after execution of a void method 1s
known at the start of the next method

m Specific Java bytecodes access objects

=> Software filtering of instructions to watch

Microsystems/MT

15

Space-Time Computing (STC)

m Speculative threads operate in:
m a different space - the speculative heap

m a different time - future time, in which objects are still
unborn with respect to the head thread

m Speculative threads interact often given that they
share common objects that do not need to be
replicated

m Versioning of objects 1s done in a separate space
which 1s cached locally

Sun Microsystems/MT

16

Space Time Computing in MAJC
CPU, CPU, CPU, Time
Method A { . Method B { ... Method C { .

STC) i i
> A: head thread
B, C, ...: speculative threads

Method A

Method B

Method C

e] e —] \—— p——

m operate in their own space
m detect RAW, WAW violations
m software rollback:

. . . ~ m garbage collect speculative heaps
Joins: collapsing of dimensions
m heap merging

m new head thread

Sun Microsystems/MT 17

MAJC and STC

m MPSOC allows fast object sharing

m Very tightly-coupled architecture
m Very fast coherency bandwidth
m Fast thread synchronization
=> A few cycles (vs. 100 for traditional MPs)

m Fast thread control mechanism

m Independent of memory access instructions
m Special instructions for STC
m Relaxed Memory Ordering (only!)

m Results given during presentation

Sun Microsystems/MT

18

Vertical Multi-Threading

m Throughput computing (vs. only latency computing)
m Cache misses typically cost 75-100 cycles (to DRAM)
m Example: 5% miss, for 100 instructions

m hits run in 1 cycle: 95 cycles

m misses run in 75 cycles: 5*75 = 375 cycles

m utilization around 20%

time >

H N L

B = processor computing

= processor 1dle

Sun Microsystems/MT

19

Vertical Multithreading
Time

Current processors:
B Bl de B

\DRAM access \DRAM access \DRAM access
MAJC implementations:
[1 NN TR T idle NN

Idle time e Switch thread as soon as a

B Thread | Cac.he mISS OCCULS .
e Maintain state for 4 running
Thread 2
threads

N . .
NN Thread 3 e Thread prlorlty allows for
Thread 4 running one thread without penalty

Sun Microsystems/MT

MAJC Support for Vertical
Multi-threading

m Special instructions

m Large unified register file
m Can be partitioned into groups of registers
m Each group can be “enabled” for each thread

m Reads and writes from/to groups are monitored

m Vertical state

m Few centralized control registers to keep track of

Sun Microsystems/MT

21

Implementation Direction:
System-On-a-Chip (SOC)

m Architecture allows the integration of IP blocks:
m ¢.g. [/O controllers (PCI, 1394, USB, etc.)
m Memory controllers (DRDRAMs, SDRAMs)

m Compute blocks (Graphics pre- and post-processors,
mixed-logic blocks for QAM, QPSK, etc.)

m Multiple levels of caches
m How?

m Fast crossbar switch, running at processor speed,
connecting CPU’s with blocks

m Handshake protocol allows interface flexibility

m Asynchronous interfaces for different clock speed I/0’s

Sun Microsystems/MT

22

Pluggable IP Modules

chip
RS

MAIJC
CPU

fast
crossbar
switch

wwappablez, Memory controller
DMA controller
ADSL Block

I/0 buffers
[.2-cache

PCI controller
USB controller

Other IP Blocks

Sun Microsystems/MT

23

Multi-Processor
System-On-a-Chip (MPSOC)

m Very tightly-coupled CPUs residing on same die
m CPUs share first-level cache or
m CPUs have a fast coherency protocol (a few cycles)
=> enables new levels of performance

m Limit complexity of each CPU (e.g. 1ssue-width)
m Limit hardware coherency domain to one die

m Scaleable communication protocol between CPUs

Sun Microsystems/MT

24

MPSOC - Implementation Example

Other
Blocks

|
I
CpPUl = D$ = CPU2

- >

fast cross-calls

Sun Microsystems/MT

Modularity and Scalability

m Modularity

Instruction-slice architecture
Step-and-repeat full custom design
Handshake protocols

Asynchronous interfaces

m Scalability

Sun Microsystems/MT

Variable 1ssue-width: 1, 2, 3, 4

Variable register file size: 32, 64, ..., 512
Datapath and address space: 32, 64
Number of processing units per die: 1, 2,

..., 1024

26

Conclusion

m Not having binary compatibility (legacy)
requirements opens the door for innovation
m A new architecture should:

m Address parallelism at multiple levels

m Allow fast clock implementations without thousand-
people-year efforts

m Reach millions of programmers through the Java™
platform and APT’s

m An architecture 1s only as good as its
implementations, stay tuned for chip disclosures

Sun Microsystems/MT

27

