
An Architecture Extension for
Efficient Geometry Processing

Radhika Thekkath,

Mike Uhler,

Chandlee Harrell,

Ying-wai Ho

MIPS Technologies, Inc.

1225 Charleston Road

Mountain View, CA 94043



An Architecture Extension for Efficient Geometry Processing 2

Talk Outline

l Motivation---why enhance the MIPS

architecture

l Background on 3D graphics geometry

operations and current MIPS architecture

l What are the enhancements?

l Performance and cost

l Summary



An Architecture Extension for Efficient Geometry Processing 3

Current 3D Rendering Limited by
Geometry Processing

l Front-end Geometry and Lighting operations

u General-purpose processors: 0.5 - 2 M polygons/s.

Eg. R5K (1998,200MHz), PIII (1999,500MHz).

l Back-end : Rendering

u Graphics processors: 6 - 8 M polygons/s.
Eg. ATI Rage 128(1999), 3Dfx Voodoo3(1999).

l A solution: dedicated hardware --- high-
performance, but expensive.

Eg. Sony Emotion Engine



An Architecture Extension for Efficient Geometry Processing 4

Our Solution

l Enhance the MIPS architecture to improve 3D

geometry performance : MIPS-3D™ ASE

(Application Specific Extension) includes 13

new instructions

l Lower cost than dedicated geometry hardware

l Main processor improvements are leveraged

u technology/speed

u parallelism/pipelining



An Architecture Extension for Efficient Geometry Processing 5

Talk Outline

l Motivation---why enhance the MIPS

architecture

l Background on 3D graphics geometry

operations and current MIPS architecture

l What are the enhancements?

l Performance and cost

l Summary



An Architecture Extension for Efficient Geometry Processing 6

Geometry and Lighting Operations

l Vertex transformation (matrix multiplication)

l Clip-check (compare and branch)

l Transform to screen coordinates (perspective

division using reciprocal)

l Lighting : infinite and local (normalization using
reciprocal square root)



An Architecture Extension for Efficient Geometry Processing 7

Already in the MIPS Architecture

l Floating point operations

u MUL (S, D, PS)

u ADD (S, D, PS)

u MADD (S, D, PS)
(multiply-add)

u RECIP (S, D)

u RSQRT (S, D)

PS- Paired-Single, two singles

S S

64 bits

S - Single FP format (32 bits)

D - Double FP format (64 bits)



An Architecture Extension for Efficient Geometry Processing 8

Talk Outline

l Motivation---why enhance the MIPS

architecture

l Background on 3D graphics geometry

operations and current MIPS architecture

l What are the enhancements?

l Performance and cost

l Summary



An Architecture Extension for Efficient Geometry Processing 9

ADDR: for Vertex Transformation

x y z w
m0   m4   m8     m12

m1   m5   m9     m13

m2   m6   m10   m14

m3   m7   m11   m15

* = xt yt zt wt

FP0 = [m1 | m0]       FP1 = [m3 | m2]

Eg. xt = m0x + m1y + m2z + m3w

MUL.PS FP10, FP0, FP8 FP10 = [m1y | m0x]

*
FP8 = [ y   |  x  ]       FP9 = [ w  |  z   ]

MADD.PS FP11, FP10, FP1, FP9

*

 [m3w | m2z]+

FP11 = [m1y+m3w | m0x+m2z]

Reorganize register to enable add

ADD.PS ...

ADDR.PS FP11, FP?, FP11 FP11 = [--  |  m1y+m3w+m0x+m2z]

ADDR



An Architecture Extension for Efficient Geometry Processing 10

Clip Check (Compare)

x >= -w, x <= w

y >= -w, y <= w

z >= -w, z <= w

Set 6 Condition Code (CC) bits

Is the vertex within the viewing pyramid?

|x| <= |w|

|y| <= |w|

|z| <= |w|

Set only 3 CC bits

Observation : Can use magnitude compares.



An Architecture Extension for Efficient Geometry Processing 11

CABS: for Clip Check Compare

CABS.LE.PS     |y|<=|w|?, |x|<=|w|?

CABS.LE.PS     |w|<=|w|?, |z|<=|w|?

Transformed [w | z]  [y | x] in FP registers

PUU.PS         to get  [w  |  w]

NEG.PS        to get  [-w | -w]

C.NGE.PS     !(y >= -w)? !(x >= -w)?

C.NGE.S       !(z >= -w)?

C.LE.PS        y<=w?   x<=w?

C.LE.S          z<=w?

Replace with 

absolute compares



An Architecture Extension for Efficient Geometry Processing 12

BC1ANY4F: for Clip Check Branch

l Without absolute compare, need 6 branch

instructions to check the 6 CC bits.

l With absolute compare, need 3 branch

instructions to check the 3 CC bits.

l New MIPS-3D™ ASE instruction ---
BC1ANY4F, a single branch instruction that

checks 4 CC bits.



An Architecture Extension for Efficient Geometry Processing 13

Geometry and Lighting Operations

l Vertex transformation (matrix multiplication)

l Clip-check (compare and branch)

l Transform to screen coordinates (perspective

division using reciprocal)

l Lighting :infinite and local (normalization using
reciprocal square root)



An Architecture Extension for Efficient Geometry Processing 14

Perspective Division and
Normalization

l In MIPS V architecture

u RECIP

u RSQRT

l Full precision

l Long latency

l Not fully pipeline-able

l Only S and D formats

l New MIPS-3D™ ASE
instructions:

u RECIP1

u RECIP2

u RSQRT1

u RSQRT2

l Reduced & full precision

l Pipeline-able

l PS format



An Architecture Extension for Efficient Geometry Processing 15

Talk Outline

l Motivation---why enhance the MIPS

architecture

l Background on 3D graphics geometry

operations and current MIPS architecture

l What are the enhancements?

l Performance and cost

l Summary



An Architecture Extension for Efficient Geometry Processing 16

Implementation Cost

l Die Area (of the Ruby processor)

u Implementation of PS adds 6-8% to FP die area.

u MIPS-3D™ ASE adds 3% to the floating point die

area. (FP is less than 15% of the total die area).

l Logic/pipeline complexity

u ADDR, CABS, BC1ANY4F, etc. - minimal impact on
both die area and FP pipeline logic.

u RECIP1, RSQRT1 - 128 word lookup tables
contribute to most of the 3% die area increase.



An Architecture Extension for Efficient Geometry Processing 17

Other Instruction Sets

l 3DNow! -- enhance 3D
graphics and multimedia

u 2-packed FP SIMD (PS)

u PFACC - accumulate

u PFRCP, PFRCPIT1,
PFRCPIT2 - reciprocal

u PFRSQRT, PFRSQIT1 -
reciprocal square root

u PF2ID, PI2FD - convert

l AltiVec

u 4 SIMD (32-bits)

u vrefp, vnmsubfp, vmaddfp
- reciprocal

u vrsqrtefp, etc - reciprocal
square root

u  vcmpbfp - bounds
compare

u vcfsx, vctsxs - convert



An Architecture Extension for Efficient Geometry Processing 18

Performance: Number of Instructions

No PS +

No MIPS-

3DTM ASE

PS +

No MIPS-

3DTMASE

PS +

MIPS-

3DTM ASE

Transform (matrix

transform + clip +

perspective divide)

29 28 20

Transform +

complex lighting 90 67 49

Note: Inner-loop instructions=cycles



An Architecture Extension for Efficient Geometry Processing 19

Experiment/Coding Assumptions

l FP pipeline has 4-cycle data dependency

l Loop interleaves computations of 2 vertices

l Transform constants locked in cache

l Vertex co-ordinates are pre-fetched from

memory to cache, every loop iteration

l Code uses full precision reciprocal and

reduced precision reciprocal square-root



An Architecture Extension for Efficient Geometry Processing 20

Performance : M polygons/s

0

5

10

15

20

25

no PS+ no ASE

PS+ no ASE

PS+ ASE

45%

83%

M polygons/s

Using today’s high-end desktop processor frequency---500MHz

transform+complex lighttransform



An Architecture Extension for Efficient Geometry Processing 21

Summary

l MIPS-3D™ ASE adds thirteen instructions to

the current MIPS 64-bit architecture

l Low cost (3% die area)

l Increases polygons/sec count by 45% for the

transform code

l Increases polygons/sec count by 36% -- 83%

for the transform+complex light code



An Architecture Extension for Efficient Geometry Processing 22

Appendix:Vertex Transformation Code

MUL.PS FP10,FP8,FP0                        FP10 <-- m1*y   |   m0*x

MUL.PS FP11,FP8,FP2                        FP11 <-- m5*y   |   m4*x

MUL.PS FP12,FP8,FP4                        FP12 <-- m9*y   |   m8*x

MUL.PS FP13,FP8,FP6                        FP13 <-- m13*y |   m12*x

MADD.PS FP10,FP10,FP9,FP1           FP10 <-- m3*w+m1*y    |  m2*z+m0*x

MADD.PS FP11,FP11,FP9,FP3           FP11 <-- m7*w+m5*y    |  m6*z+m4*x

MADD.PS FP12,FP12,FP9,FP5           FP12 <-- m11*w+m9*y  | m10*z+m8*x

MADD.PS FP13,FP13,FP9,FP7           FP13 <-- m15*w+m13*y | m14*z+m12*x

PLL.PS FP14,FP11,FP10

PUU.PS FP15,FP11,FP10

PLL.PS FP16,FP13,FP12

PUU.PS FP17,FP13,FP12

ADD.PS FP8, FP15,FP14

ADD.PS FP9,FP17,FP16

ADDR.PS FP8,FP11,FP10         FP8 <--  m4x+m5y+m6z+m7w | m0x+m1y+m2z+m3w

ADDR.PS FP9,FP13,FP12         FP9 <-- m12x+m13y+m14z+m15w |

                                                                                                            m8x+m9y+m10z+m11w

FP0--FP7 hold m0--m15 in pair-single
FP8, FP9 hold x,y,z,w in pair-single

Replace with



An Architecture Extension for Efficient Geometry Processing 23

Appendix:The 13 MIPS-3D™ ASE Instructions

Type Mnemonic Valid Formats Description

ADDR PS Floating point reduction add

MULR PS Floating point reduction multiply

RECIP1 S, D, PS Reciprocal first step – reduced precision

RECIP2 S, D, PS Reciprocal second step – enroute to full precision

RSQRT1 S, D, PS Reciprocal square root  first step – reduced precision

Arithmetic

RSQRT2 S, D, PS Reciprocal square  root second step

CVT.PS.PW PW Convert a pair of 32-bit fixed point integers to a pair-

single floating point value

Format

Conversion

CVT.PW.PS PS Convert a paired-single floating point value to a pair of

32-bit fixed point integer values

Compare CABS S, D, PS Magnitude compare of floating point values

BC1ANY2F Branch if either one of two (consecutive) CC bits is F

BC1ANY2T Branch if either one of two (consecutive) CC bits is T

BC1ANY4F Branch if any one of four (consecutive) CC bits is F

Branch

BC1ANY4T Branch if any one of four (consecutive) CC bits is T


