Broadcom BCM5600 StrataSwitch

A Highly Integrated Ethernet Switch On A Chip

Andrew Essen and James Mannos

Broadcom Corporation

Outline

- Introduction
- Networking Basics
- Description of BCM5600
- Design Process
- Vital Statistics
- Conclusion

- A single modern processor can now saturate a LAN which used to be easily shared by multiple users.
- Multimedia applications, especially those with realtime requirements, place a huge strain on bandwidth

New Technology to the Rescue

- New Network Architectures replace shared media and hubs with dedicated media and switches
- Provision for Increased Bandwidth replace 10Mb/s with 100Mb/s (FE) and 1000Mb/s (Gig)
- <u>New Protocols</u> L4 to L7 filtering, Class of Service (802.1p), Virtual LANS (802.1Q)
- Advancing Semiconductor Technology DSM (< .25µ), System-on-chip architectures, and large amounts of integrated memory.

Project Goals

Features	Benefits
Switch On Chip	- Lowest Cost/Port
	- Faster System Development
	 Modules can be easily "bolted" on
2410/100&2GigPorts	- High Capacity
Non-blocking	- High Performance
Non-blocking L2/L3 Swite	h Line speed switching and routing
Line speed L4-L7 filtering	- Fast Filter Processor & Flexible Rules Engine
	- Content Aware traffic classification based on any
	combination of designated fields.
Advanced Features	- 4-levels of COS (Class of Service).
	- Support of Virtual LANs runking, Flow Control,
	Mirroring, Tagging & Spanning Tree
	- Elimination of Head of Line Blocking
	- Broadcast/Multicast
On board SRAM caches	- Allows use of low-cost, external SDRAM
PCI interface	- Flexible connectivity and expandability.

What Makes a SOC so Tough?

- Network traffic is chaotic and asynchronous
- Can have large differential flows of data
- Behavior often appears non-deterministic because of packet drop
- Differing packet sizes & formats along with a huge amount of state - very difficult to verify
- 60M transistors, 1 MB SRAM, 4M+ gates.

Traditional Network

Another Layer 2 Domain

Each L2 broadcast domain is connected by a router

Layer 2 Switching

- Appears to end stations as though everybody is still on a single shared media
- Lookup destination MAC address and forward packet to correct port
- Numerous packets can be "on the wire" simultaneously
 - Up to 52 with the BCM5600
 - 26 full duplex ports
 - Versus 1 with a traditional shared Ethernet

Layer 3 Switching

- End stations must be kept aware of routing configuration
- L3 Switching is performed when the L2 destination is the router itself
 - Lookup IP destination in routing table
 - Update L2 addresses
 - Decrement TTL
 - Forward packet to correct port

Layer 4-7 Processing

Pattern matches result in actions

- Kind of like a simple awk script
- Actions include drop, change priority, change destination, send to CPU

Applications include:

- Detect traffic type based on TCP port and reprioritize
- Support VoIP and multimedia applications such as real-time video
- Simple firewall by examining IP addresses

StrataSwitch 24+2 Switch

Simplified Block Diagram

All packets travel as cells along a very wide central bus

Ingress Details

MMU Details

Egress Details

PCI Details

- 32 bit/ 66 MHz operation
- Also behaves as port 27
 - Contains mini- ingress & egress
 - Allows easy processing of unusual packets
 - E.g., routing non- IP packets

Simulation

- "Cycle accurate" C++ model
- Validate architecture
 - First implementation of initial concepts
 - Try out various algorithms
 - Find bottlenecks
- Optimize queue and buffer sizes
 - With regards to finite real estate

Simulation Results

24+2 Streaming to 24+2

More Results

Simulated Packet Flow

Timeline of individual packets in simulation

Verification

Verification is complicated by...

- Multithreaded, asynchronous nature
- Long operations
 - 160k cycles for 1500B packet at 10 mbits
- Long time to steady state
 - Filling 64 Mbytes takes a while at 100 Hz
- Dropped or redirected packets may be correct

Multiple solutions

- Extensive unit testing
- Full chip testing with automated checking
- Emulation

Checker

Emulation

• 50 KHz is a lot better than 50 Hz!

- Allows software development
- Millions of packets per day
- Test environment is similar to that for silicon debug

Emulation Setup

SmartBits unit, Host PC, and speedbridges

The Emulator

One of three cabinets

System Bringup

SmartBits and board

Reference Board

Design Timeline

Vital Statistics

- 24+2 ports
- 60 million transistors
- 1MB of embedded SRAM
- 133 MHz
- 0.25u 5 metal CMOS
- 2.5V core, 3.3V I/O
- 600 ball TBGA package

Summary

- First integration of 24FE + 2GE, line-speed, L2-L7 switch on a <u>single</u> chip
- Enables convergence of voice, video, and data to the desktop.
- First pass silicon in less than 12 months, read PCI ID in minutes, switching packets the next day!
- Good flow from solid spec through emulation was crucial to the success.

