
Hot Chips 11 Wiggins/Redstone 1

Dean Deaver
Rick Gorton
Norm Rubin

{dean.deaver,rick.gorton,norm.rubin}@compaq.com

Wiggins/Redstone:
An On-line Program

Specializer

Hot Chips 11 Wiggins/Redstone 2

W/R is a Software System That:

u Makes arbitrary binary applications run faster
without requiring any work from the programmer

u Aggressively optimizes/specialize an application
for a particular use on a particular machine

u Moves optimization/compilation closer to the
actual use of the program

Hot Chips 11 Wiggins/Redstone 3

W/R is On-line

u Executes dynamically while the program is
running

u Uses path profiles
u Modifies in-memory images to take advantage of:

– Data values
– Temporal effects

Hot Chips 11 Wiggins/Redstone 4

Motivation

u Static code optimization (at compile time)
– Know little about the dynamic behavior of

programs
– Know little about the actual machine
– Know nothing about the actual data

u Feedback directed optimization gets some
knowledge of dynamic behavior, but is tricky to
use

u Prior dynamic approaches not general purpose

Hot Chips 11 Wiggins/Redstone 5

u Binary images
u Paths
u Specializes code in

many ways
u Opts are platform

dependent
u Starts with the code

produced by an
optimizing compiler

u Java
u Procedures (or parts)
u Specializes code to

remove virtual calls
u Opts are platform

independent
u Starts with the code

produced by a JIT

W/R Hotspot

Hot Chips 11 Wiggins/Redstone 6

W/R Approach

u Input is an arbitrary binary without any special
compilation switches or annotations

u Load the profiler and optimizer into the
application

u Do the specialization at run-time
u Use value profiling at key points
u Optimizations performed are specific to the

underlying micro-architecture
u Optimizations are also data set specific

Hot Chips 11 Wiggins/Redstone 7

W/R Benefits

u At run time, automatically (without programmer
direction) reorganize, optimize and specialize
important dynamic code sequences

u Exact knowledge of:
Program behavior, phases
Program invariants (glacial variables), data

u Low overhead

Hot Chips 11 Wiggins/Redstone 8

Relationship With Hardware
u Hardware engines are starting to optimize code

– Out of order execution
– Branch and value prediction
– Trace processors

u W/R uses hardware (performance counters) to
direct the software to start building software
instruction traces

u Dynamic compilation may be required to exploit
new hardware

u Not either/or software/hardware technique

Hot Chips 11 Wiggins/Redstone 9

The W/R System Architecture

1 The agent - A modified loader/launcher that
starts the system

2 A low overhead, hardware based sampler
3 A trace builder that finds and instruments parts of

a program
4 Optimizer/specializer (works on superblocks)
5 OS independent

– Windows NT
– Tru64 UNIX

Hot Chips 11 Wiggins/Redstone 10

System Flow

While the program is running {
1. Identify a hot instruction
2. Build a trace containing the instruction
3. Instrument the trace
4. Specialize the trace
5. Optimize the trace

}

Step 1 is hardware, 2-5 are software

Hot Chips 11 Wiggins/Redstone 11

Agent

u A special loader
u Adds code to an image when started. This code

contains the profiler and optimizer
u The agent is shared over applications
u The agent knows about the actual platform, so

old programs can run on new platforms
u Allows us to add new optimizations to old

programs

Hot Chips 11 Wiggins/Redstone 12

Sampler

u We use a hardware PC sampler to find “hot”
seed instructions
– The sampler is a source of frequent interrupts
– Look for frequent values of program counter at
– Interrupt time
– Code is based on DCPI

u Approach works on out-of-order machines such
as 21264

Hot Chips 11 Wiggins/Redstone 13

Trace Builder

u Given a seed instruction
– Copy it and the remainder of the block to a

side buffer
– Add instrumentation code, guards to insure

correctness, branch back
– Patch the image to branch to the copy
– After the instrumentation code finds the most

common successor extend the copy
u Copied instructions form a superblock
u Effectively a lazy instruction trace constructor

Hot Chips 11 Wiggins/Redstone 14

Optimizer/specializer

u Specializes "hot" traces using machine-specific
information. Introduce guards as necessary

u Exploits temporal info
u Analyzes what to monitor
u Performs architectural and micro-architectural

optimizations (byte/word loads and stores on
alpha)

u Applications will continuously monitor themselves
and perform self-improvements whenever
necessary

Hot Chips 11 Wiggins/Redstone 15

Advantages

u The application carries no machine-specific
information

u Can update the agent to incorporate new
optimization techniques as they become
available

u Programs compiled using generic or 21064
specific features run faster on 21164; 21164
specific programs run faster on 21264, ...

Hot Chips 11 Wiggins/Redstone 16

Some Data Points

u Povray - a freely available rendering package
u Image “matches.Pov”

– 2 billion calls to power(x,y)
– If you perform three levels of inline on the

frequent path you find that y = 8.0
– Calls to power() are on the frequent path 95%

of the time

Hot Chips 11 Wiggins/Redstone 17

Povray Image

Hot Chips 11 Wiggins/Redstone 18

How Many Traces?

u Typically less than16 traces at a time
u Traces contain several hundred instructions
u Traces often account for 50-90 of the run time of

an image
u Traces are removed as the computation evolves

Hot Chips 11 Wiggins/Redstone 19

PovRay shapes.pov Demo

Hot Chips 11 Wiggins/Redstone 20

Percent of Time on Traces

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

time

Hot Chips 11 Wiggins/Redstone 21

Characteristics of Traces
(shapes.pov)

u Povray: 661069 static instructions
u Traces

– 7 traces total
– 1586 instructions (0.239%)
– 819 unique instructions (0.123%)

Hot Chips 11 Wiggins/Redstone 22

Characteristics of Traces

u Inter-procedural
– Often 2-4 levels deep

u Can include one loop
– But may include many unrolled loops

u May be up to 2000 instructions long
– Often 300-500 instructions
– Long enough to insert pre-fetch instructions

u Need not stop at a register transfer, return, or call
site

Hot Chips 11 Wiggins/Redstone 23

Conditional Branches (Cbrs)

u 76 unique cbrs
u 115 instances of a CBR show up on various

traces
u Trace probabilities vs. Aggregate probabilities

– Correlated branches
– Temporal effects

u 5-10% of branches have multiple instances with
reversed directions

Hot Chips 11 Wiggins/Redstone 24

Cbrs Vs Static Branch Probs

Branch Trace Probability Aggregate
0x12003cc48 3 1.00 0.13

8 0.00

0x12003cc74 3 0.00 0.00

0x12003cc9c 1 1.00 1.00
3 1.00
3 1.00

Hot Chips 11 Wiggins/Redstone 25

Temporal Effects

u A single program using one data set can show
phases, which may not be apparent in the source
code

u Different phases require different optimizations
u E.G.. Compress (SPEC95) -

– For each data item - look it up in hash table
– Initially most items are not in table
– Later most items are in table

Hot Chips 11 Wiggins/Redstone 26

Sunsethf.pov

T
race construction

(T
im

e)

Hot Chips 11 Wiggins/Redstone 27

Temporal Effects

Hot Chips 11 Wiggins/Redstone 28

What Don’t We Do?

u W/R works on applications not system kernels
u Does not modify OS components
u Does not modify program memory layout
u Does not work with device drivers

Hot Chips 11 Wiggins/Redstone 29

Final Comments

u Wiggins/Redstone is the software analog of a
trace processor

u Runs on stock hardware/stock OS
u Optimizes/specializes binary images
u Runs on-line
u Captures temporal effects
u One tool, in a more adaptive computing model?
u Return to self-modifying code?

