POWER4

Synchronous Wave-Pipelined Interface

IBM

Authors: Frank Ferraiolo

Edgar Cordero

Daniel Dreps

Michael Floyd

Kevin Gower

Bradley McCredie

Worse Case Timing for a Typical Interface

Timing Parameters	pS		
Clock Skew on Transmit Side	100		
Silicon on Transmit Side	1,000		
*Wiring - drv to chip pad, drv module, card(40cm), rcv. module, chip pad to rcv.	3,000		
Silicon on Receive Side	1,000		
Clock Skew on Receive Side	100		
Coupling, Jitter, reflections	700		
PLL - long term jitter	250		
TOTAL	6,150		

Bus Cycle Time = W.C. Path + the time to next bus clock = < 150 Mhz

Timing Variations for a Typical Interface

Timing Parameter Variation	pS	
Clock Skew on Transmit Side	100	
Silicon process on Transmit Side	600	
Wiring - drv to chip pad, drv	500	
module,card,rcv. module, chip pad to rcv.	500	
Silicon process on Receive Side	600	
Clock Skew on Receive Side	100	
Coupling, Jitter, reflections	700	
PLL - long term jitter	250	
TOTAL	2,850	

Bandwidth & Cycle Limited ~ 200Mhz where the tgt cycle = 1.5 or 2

Conventional Interface Timing

NOT PRESENTED

1a) The period of the bus clock is slightly greater than the worse case latency of the interface.

1b) The minimum latency of the interface must be greater than the skew between the sending and receiving latch pairs. (trivial)

Note the data is always captured (target cycle) in the first bus cycle.

Very Limited Use of Pipelining, better described as Bus "Tuning"

2a) The data's target cycle (capture cycle) was the second cycle and the card wire or silicon path was "tuned" to ensure the proper timing.

2b) The best case latency > (target cycle -1). The fast and slow case are equally important.

Note the data had to arrive in the same bus cycle.

Conventional Interface Timing

Bus speed f {interconnect latency, timing variations, processor speed}

Power4 Design Goals

NOT PRESENTED

Generic High Performance Interface

Current Design > 500 MHz

Next generation PowerPC processor - 1Ghz I/O

Minimize latency - Synchronous transfer

In order to allow multiple system configurations the latency between chips must be a variable.

The latency of the interface can vary over a wide range (multiple bus cycles) while maintaining synchronous operation.

--> Transfer rate (bus cycle time) is made nearly independent from the latency.

--> Increased Performance / Bandwidth - Reduce the amount of timing variations without imposing stringent and costly manufacturing or design constraints.

Power4 I/O Design Goals

Point to point, uni & bi-directional bus types Wide Bus Widths Multiple System Configurations VLSI Compatible - All Digital Design Low Power - Source Terminated Drivers - Active Clamps on Receivers Easily Mapped between Technologies Easily Customized to application

- Bus width, Speed, Distance, skew

Power4 Design Point

Latency:

FIFO on Receive Side

- Initialized at Power On

- Provides multiple bit times of data valid (Elasticity) allowing for a wide range of arrival times.

- Synchronous
- Programmable "target cycle"
- Minimal Added latency

Note: gates are shifted one bit time at a time until a 1 is detected in data 0 and a 0 is detected in data 3. Thus, after alignment, the '1' in the IAP pattern (time 0) is captured by latch 0.

* target cycle

^

Elasticity Facilitates

NOT PRESENTED

o Synchronization and Timing

- Synchronization is maintained over a much wide range of latencies. The bandwidth of the interconnect determines the speed of the bus.

- Target time (capture cycle) is programmable (MOD4).

o Chip, Module & Board Wiring - Elasticity is used to synchronize chips which are at different electrical lengths. No need to "tune" the timing to a particular chip or balance the wiring between chips.

o Can be used with receive chip with or without a PLL i.e. SRAM (Slave) Chip Timing

o Multiple System Configurations can be easily supported and optimized without significant redesign and timing analysis.

o The bus speed more easily scales with the speed of the processor.

9

9

System Configuration

Master to master - both chips are synchronous, common time reference

Master to slave to master - Slave's time reference is initialized @ power on

slave's chip clock derived from interface

Power4 Design Point

Increase Bandwidth

- Reduced clock skew on Send & Receive Side
- Reduced Silicon Variation on both sides
- Reduced Wiring Variations chips, module, card
- Eliminate Long Term PLL Jitter

Achieved By

- Source Synchronous Interface Clock is edge aligned w/ data
- Optimizing the phase of the clock at the sampling latch
- Per Bit Deskew

POWER4 Wave-Pipelined Receive Macro

ALGORITHM

Clk start	
Clk delayed to en	d of '1'
Latest data	
Data bit n	
Earliest data	
Combined data	
	Find trailing edge of '1' in combined data

ALGORITHM Con't

High Speed Operation

Clock Sample = (flag1 + flag2 - Tc)/2 where Tc = bit time

Low Speed Operation

Clock Sample = (flag0 + flag1)/2

Minimum Insertion Delay - one fine delay element

High Resolution achieved with scaling of device channel lengths

Monatomic Delay

High Bandwidth / Low Pulse Distortion

Scales with Technology

Trade off - Resolution vs. Deskew Range Vs. Area

Timing Variations for a Typical Interface using the POWER4 I/O Design

Timing Parameters	pS		
Clock Skew on Transmit Side	25		
Silicon process on Transmit Side	0		
Wiring - drv to chip pad, drv	0		
module,card,rcv. module, chip pad to rcv.	0		
Silicon process on Receive Side	0		
Clock Skew on Receive Side	25		
** Coupling, Jitter, reflections	700		
PLL - long term jitter	0		
TOTAL	750		

STATIC SKEW COMPENSATION IS LIMITED TO ~ 800pS

****** Note this term highly dependent on the distance of the interface. It can be significantly reduced with far end termination

Example Data Valid for a POWER4 Interface

Timing Parameters	pS
**Temp. & Power Supply Drift	+/-200
Clock Duty Cycle Distortion (+/-5%)	+/-100
*Clock Sampling Pt. Resolution	+/-135
*Per Bit Deskew Resolution	90
Latch Set Up Time	100
TOTAL	1,060

* This assumes a 90pS delay step under worse case conditions

** Future Design points will track Temp. & Power supply changes - The clock calibration circuit continuously operates. An update occurs upon issue of a reload command. A reload is accomplished in 24 bit times. With a 10uS interval this would impact the bandwidth by $\sim .5\%$

Enhanced Diagnostics

Reading out the register settings after initialization

flag0 = clock position relative to latest arriving bit

flag2 - flag1 = data uncertainty region

max. - min. per bit deskew = skew between data bits

clock calibration = # delay elements in a clock period

POWER4 TEST CHIP BOARD WIRING

WIRING SHOWN FOR ONE DIRECTION ONLY

Distance shown for total board wires with zero cable length

Below is a random data pattern with the associated bus clock at 30cm board trace, and the IAP pattern. Clamps are used on the receiver to provide soft termination.

POWER4 TEST CHIP RESULTS

Skew on Data bits	Dly Element Cal.	Flag-0	Flag-1	Flag-2	Clock Delay pS	Data Valid pS	Bus Width	**Bus Length cm
2	39	2	28	41	15	1,337	24	25/20
15(max.)	39	15	41	55	28	1,286	48	35/20
15(max.)	38	24	32	63	28	357	73	45/20 *
2	39	10	27	49	18	787	24	25/70

2ns Operation

* Initialization Only

** Bus length - first number is cm of card wire and second number is cm of Teflon cable