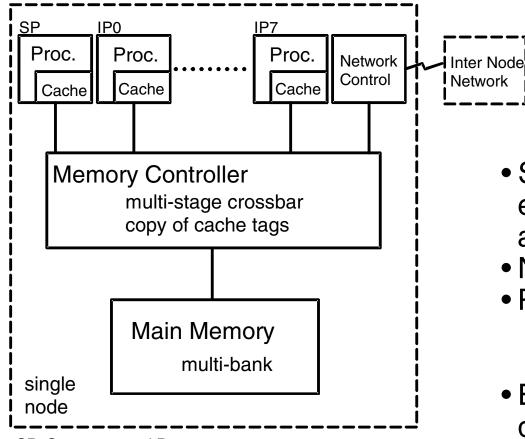
A RISC Processor for SR8000: Accelerating Large Scale Scientific Computing with SMP

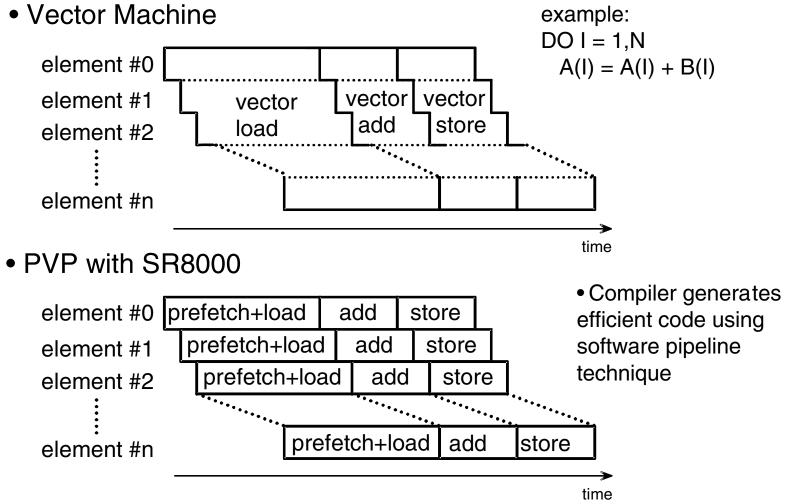

Toshihiko Kurihara, Eiki Kamada, Kentaro Shimada, Teruhisa Shimizu

Hitachi, Ltd.

Presentation Outline

- SR8000 Block Diagram
- Design Goals
- Pseudo Vector Processing
- Processor Core
- Chip Profile
- Summary

Block Diagram of SR8000


SP: System control Processor IP: Instruction Processor

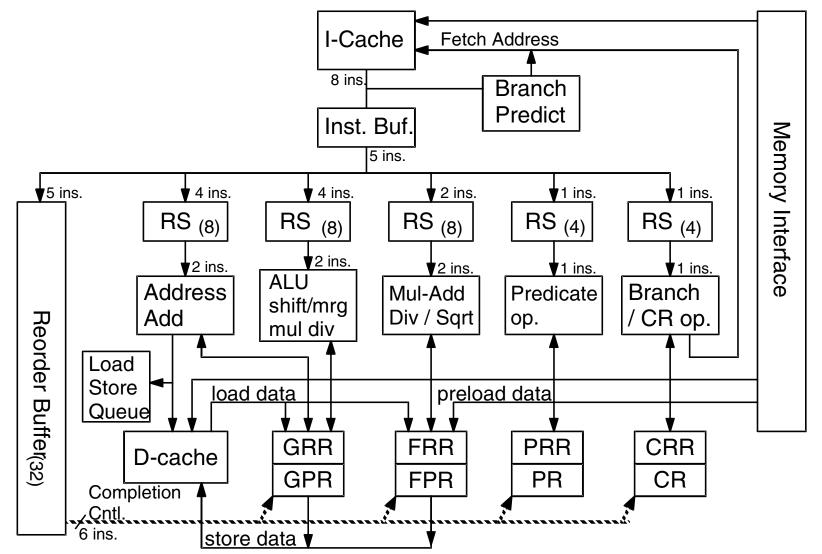
- System to efficiently execute large scale scientific applications.
- Number of nodes: Max 128
- Parallel execution of DO-loops with SMP.
- Efficient processing of data in main memory
- Pseudo Vector Processing

Design Goals

- High performance
 - High operating frequency
 - High memory throughput
- Enhancement of Pseudo Vector Processing (PVP) feature
- High reliability

Pseudo Vector Processing

Pseudo Vector Processing(cont.)

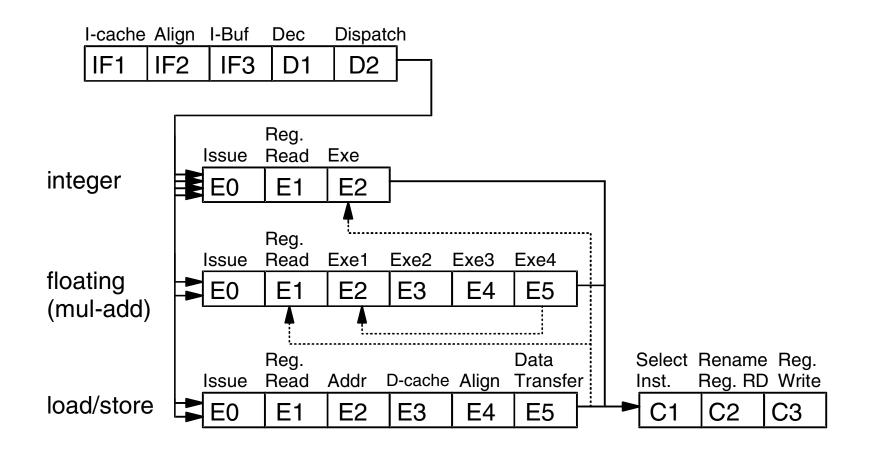

- Architectural support
 - Prefetch instruction
 - Preload instruction
 - Slide-windowed floating-point registers
 - 128 logical floating-point registers
 - TLB supporting large pages
- Memory system support
 - Pipelined processing of memory requests Prefetch: 16, Preload: 128
 - High speed memory interface: 4GB/sec

Processor Core

- Architecture: 64bit PowerPC^(*) + Hitachi Extension
- Out-of-order, superscalar execution
- 4 floating operation / cycle
- Instruction cache: 64KB, 2-way set associative, 128B / line
- Data cache: 128KB, 4-way set associative ,128B / line
- Quad-word (16B) load
- Fault detection logic
- Pseudo Vector Processing features

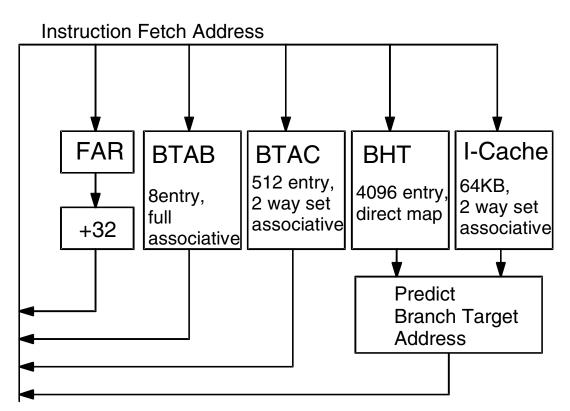
(*) PowerPC is a trade mark of International Business Machines Corporation.

Block Diagram of Processor



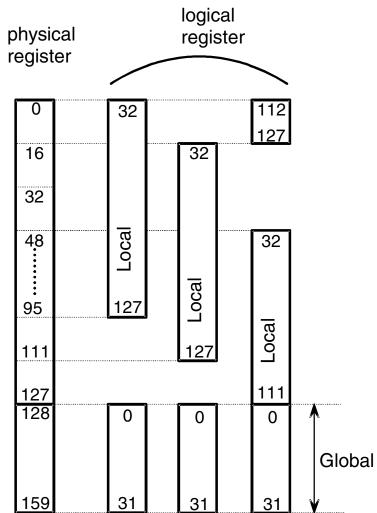
HITACHI

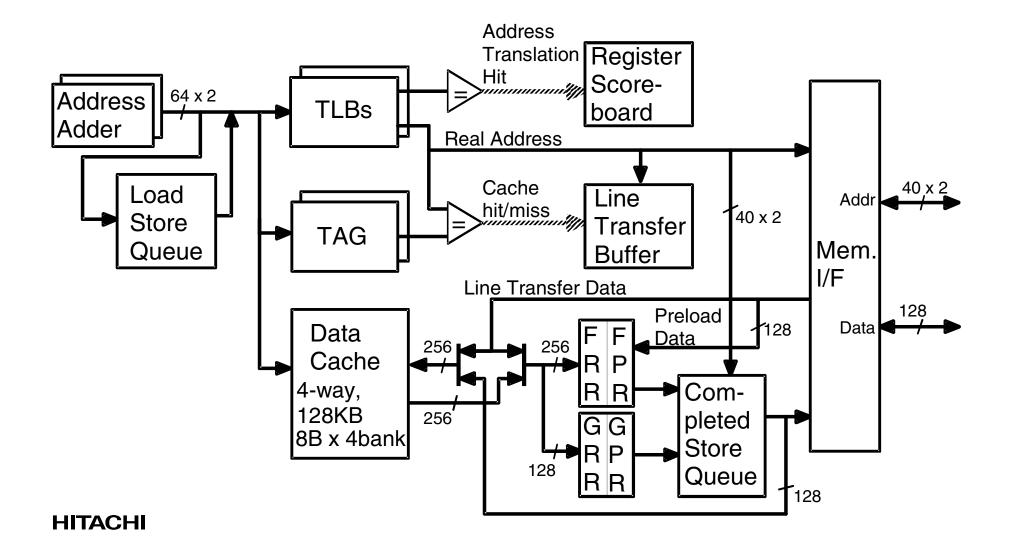
Summary of Superscalar Execution


- Number of Functional Units
 - Integer : 2 ALUs, 2 shifter / mergers,
 - 1 multiplier, 1 divider
 - Floating : 2 multiply-add units (4 floating operations / cycle) ,
 1 div / sqrt unit
 - 2 Load / Store units
 - 1 Branch / Condition Register operation unit
 - 1 Predicate unit
- Superscalar Execution
 - Fetch : 8 instructions / cycle
 - Dispatch : 5 instructions / cycle (5-th instruction must be a branch)
 - Execution : 8 instructions / cycle
 - Completion : 6 instructions / cycle

Pipeline Stages

Instruction Fetch


- 64KB, 2-way set associative Instruction Cache
- Line Size : 128B
- 16B x 2 bank
- Up to 8 instructions are fetched per cycle.
- Branch prediction
 - BTAB : 0 cycle
 - BTAC : 1 cycle
 - BHT : 2 cycle


FAR: Fetch Address Register BTAB: Branch Address Target Buffer BTAC: Branch Address Target Cache BHT: Branch History Table

Floating-Point Register

- Basic instructions (load/store, preload, fadd,) can directly specify 128FPRs.
- Slide-Windowed Floating-Point Register
 - Number of global registers: 4 / 8 / 16 / 32
 - Minimum slide pitch: 2
 - Instructions to control register window
- Large register file
 - 1.8KB

Load and Store

Prefetch and Preload

- Prefetch and preload releases resources (reorder buffers, rename registers,....) as soon as address translation completes.
 - Does not occupy resources for a long time.
- Prefetch
 - Transfers one cache line (128B) from main memory to cache.
 - Data arrival is checked by line transfer buffer.
 - Up to 16 transfers are processed in pipeline manner.
 - Line transfer buffer also handles cache miss of load instruction.
- Preload
 - Transfers 8B from main memory to a floating-point register.
 - Bypasses data cache.
 - Directly specifies 128 FPR.
 - Target register is not renamed.
 - Up to 128 transfers are processed in pipeline manner.
 - Data arrival is checked by scoreboard.

Address Translation Resources

- Effective address: 64 bits; Real address: 40 bits
- Instruction TLB

2-way set associative, 512 entries, 4KB / page

- Data TLB
 - 2-way set associative, 512 entries, 4KB / page
 - Covers only 2MB.
- TLB supporting large pages (LTLB)
 - Covers entire physical memory space.
 - Data reference only
 - Size of large page is 16MB-128MB (All entries have same mapping size at the same time.).
 - Direct map, 256 entries
- TLB miss handled by hardware

Memory Interface

- Pipelined processing of fetch requests
 - Prefetch or cache-miss load requests : 16
 - Preload : 128
 - Instruction fetch : 2
- 2 preload requests are issued per cycle.
- 2 store requests are issued per cycle.
- High speed interface --- 4GB/sec
- Invalidate request from memory controller
 - Data cache
 - Instruction cache
 - TLB

Reliability

- On chip memory
 - 100 % Single-bit error detection by parity
 - Erroneous data are not used for execution.
 - Detected error is reported as interrupt.
 - Interrupt handler clears memory.
- Data path
 - Variety of fault detection methods used
 - ALU : parity prediction

Floating-point unit : residue check

Other important data paths (address, store data,): parity

- Retry instruction if architecture resources maintain correct data

Chip Profile

- Process: 0.25-µm, CMOS
- Number of metal layers: 7
- Power supply: 1.8V
- Frequency: 400MHz(*)
- Die size: 18.5 mm X 18.5 mm
- Transistor: 23 million
- Number of signal pins : 560
- Static circuit except memories and register files

(*)Typical silicon processing and typical environment

Photograph of Chip

FLOATING-POINT EXECUTION UNIT

	FLOATING- POINT REGISTERS		FLOATING- POINT REGISTERS	INSTRUCTION PROCESSING UNIT	
PLL	INTEGER			BRANCH HISTORY TABLE	
	EXECUTION G UNIT	GF	EXECUTION CONTROL	ADDRESS TRANSLATE	BRANCH PROCESSING UNIT
	DIAGNOSIS UNIT ADDRESS ADDER		DATA CACHE		
	ADDRESS TRANSLATE	CACHE CONTROL	DATA CACHE	INSTRUC CACHE INSTRUC	
	SYNONYM	00	DATA CACHE	CACHE	

MEMORY INTERFACE

Summary

- High performance RISC processor for SR8000
- High memory throughput
- Enhanced Pseudo Vector Processing feature
- Aggressive superscalar execution
- High reliability

- Fault detection of memory and data path