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Overview

• Compiler Architecture

• Profiling
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IA-64 Compiler Architecture

Profiler

C++

Front End

Interprocedural Analysis and

Optimizations

Memory Optimizations,

Parallelization and Vectorization

Global Scalar Optimizations

Predication, Scheduling, Register

Allocation and Code Generation

FORTRAN 90

Front End

Part II: Compiler

Optimizations

Part III: Back-end

Technologies



Hot Chips tutorial 1999

®

Compiler

Profile-based Optimizations

• New IA-64 features enable aggressive optimizations

and scheduling based on profiling information.

• The highest performance can be achieved with the most

accurate profiling information.

• Characterize the execution behavior of the program

• Use the profile information to guide optimizations
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Profile Generation

• Static profiling

– Program-based heuristics (e.g. loop branch, pointer, call, opcode,

loop exit, return, store, loop header, guard, error) for branch

probabilities.

– Estimation of execution frequencies on basic blocks from

probabilities and control-flow graph.

• Dynamic profiling

– Program instrumentation (compile once with counters inserted).

– Run the instrumented program with a sample input set.
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Using Profile

• Profile used in many parts of the IA-64 compiler

• Branch probability guide

– Predication region

– Scheduling region

– Speculation

– Code placement

• Execution frequency guide

– Procedure inlining/partial inlining

– Loop optimizations

– Software pipelining

– Register allocation
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Part II: Compiler Optimizations on IA-64

Rakesh Krishnaiyer

 Dattraya Kulkarni

 Wei Li

 John Ng

 David Sehr

                   Peng Tu (Tensilica)

Microcomputer Software Labs
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Overview

• A partial list of optimizations that can make use of the

IA-64 features

– Procedure Inlining

– Interprocedural Analysis

– Code Placement

– Data Dependence Analysis for Speculation 

– Eliminating Memory Operations

– Cache Optimizations

– Overlapping Memory Latency

– Parallelization and Vectorization

– Loop Unrolling for ILP

– Partial Redundancy Elimination

• and more …...
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Procedure Inlining

• Benefits:

– Interprocedural information for a specific call site.

– Larger code region for optimizations (such as loop

transformations)

–  Larger code region to schedule

•  Cost:

– Code size increases

•  Selective integration (partial inlining and cloning) to

reduce code size growth.
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Inlining

void func1()

{

int i;

for (i=0;…)

func2(i);

}

void func2(int x)

{

a[x] = 1.0;

}

void func1()

{

int i;

for (i=0;…)

a[i] = 1.0

}

• Inlining a function body into a call site.
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Partial Inlining

void foo(x)

{

  if (P(x))

    a hot region here

  else

    a large cold region here.

}

void main()

{

  call foo(y)

}

void foo_cold(x)

{

  a large cold region here.

}

void main()

{

  if (P(y))

    a hot region here

  else

    call foo_cold(y)

}

• Copy the hot portion of a function into a call site.

• Remainder becomes a splinter function.
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Cloning

void func1()

{

func2(0, n);

func2(0, m);

func2(i, m);

}

void func2(int i, int j)

{

if (i == 0)

  // do something

else

  // do something else

}

void func1()

{

func2_0(n);

func2_0(m);

func2(i, m);

}

void func2_0(int j)

{

// do something

}

• Specializing a function to a specific class of call sites.
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Interprocedural Analysis and Optimization

• Use of Alias Analysis

– Indirect call conversion

– Better disambiguation

• Use of Mod/ref Analysis

– Fewer kills due to unknown modification (PRE) or reference

(PDSE)

• Constant propagation

– Makes constant parameters and globals explicit.

– Enables cloning.

– Remove unnecessary conditional code.

– Improves data dependence analysis.
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Code Placement

• Instruction locality optimizations

• Block ordering

– Lays out blocks to take best advantage of branch heuristics.

– Groups hot blocks together

– Places cold blocks at function end

• Function placement

– Places functions near callers and callees.

• Function splitting

– Moves cold portions of all functions into a special cold segment
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Function Placement

SOURCE:

void func1()

{

...

func3();

...

}

void func2()

{

// really big function

// not called frequently

}

void func3()

{

}

PAGE LAYOUT:

func1

func2

func3

func1

func2

func3

without with

page boundary
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Data Dependence Analysis for Speculation

for i = 1, M

  A[i] = B[i]  +  A[3]

end_for

ld B

ld A[3]

add

st A

• Hoist loads above possibly conflicting stores. Applied with

probabilistic data dependence analysis.

• Result: hiding latency and improve software pipelining.

ld B

ld A[3]

add

st A
ld B

ld A[3]

^^^^^^

ld B

add

chk.a

st A

No data 

speculation

Data

speculation

ld.a A[3]

ld B

add

chk.a

st A

ld B

add

chk.a

st A
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Computing Probability

for i = 1, M

  A[i] = B[i]  +  A[3]

end_for

• Compute the number of occurrences of the dependence.

• Estimate the number of dynamic pairs of  ld/st or st/st., e.g. the

size of the iteration space.

The number of

solutions for

A[i]=A[3] is 1.

The dependence probability is 1/M.

The number of

pairs (A[i], A[3])

is M.
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Eliminating Memory Operations

• Problem:

– Increasingly large gap between processor and memory speed.

– Register allocation

• only handles scalars, not array references.

• doesn’t exploit data reuse carried by loops.

• Solutions

– Register Blocking

– Load and Store Elimination

• IA-64 advantage: large register set
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Register Blocking

for j = 1, 2*M

  for i = 1, 2*N

    A[i, j] = A[i-1, j]  +  A[i-1, j-1]

  end_for

end_for

for j = 1, 2*M, 2

  for i = 1, 2*N, 2

    A[i, j] = A[i-1,j] + A[i-1,j-1]

    A[i, j+1] = A[i-1,j+1] + A[i-1,j]

    A[i+1, j] = A[i, j] + A[i, j-1]

    A[i+1, j+1] = A[i, j+1] + A[i, j]

  end_for

end_for

• Turn loop carried data reuse into loop independent data reuse,

usually in the same basic block.



Hot Chips tutorial 1999

®

Compiler

Virtual Register Allocation

for j = 1, 2*M

  for i = 1, 2*N

    A[i, j] = A[i-1, j]  +  A[i-1, j-1]

  end_for

end_for

for j = 1, 2*M, 2

  for i = 1, 2*N, 2

    r1 = A[i-1,j]

    r2 = r1 + A[i-1,j-1]

    A[i, j] = r2

    r3 = A[i-1,j+1] + r1

    A[i, j+1] = r3

    A[i+1, j] = r2 + A[i, j-1]

    A[i+1, j+1] = r3 + r2

  end_for

end_for

• Turn array references into scalars.

• Result: memory operations reduced to register load/store.

Large register file allows more

aggressive blocking. E.g. from

8MN to 4MN loads.
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Load and Store Elimination

for i = 2, N+1

          = A[i-1] + 1

    A[i] =

end_for

t1 = A[1]

for i = 2, N+1

      = t1 + 1

  t1 =

  A[i] = t1

end_for

• Eliminate loads and stores for array references by exploiting data

reuse carried by loops, a.k.a scalar replacement.

• Result: more memory operations reduced into register load/store.

Benefits: reduced 2N to N memory

operations.
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Unroll-and-Jam

for j = 1, 2*M

  for i = 1, N

    A[i, j] = A[i-1, j]  +  A[i-1, j-1]

  end_for

end_for

for j = 1, 2*M, 2

  for i = 1, N

    A[i, j] = A[i-1,j] + A[i-1,j-1]

    A[i, j+1] = A[i-1,j+1] + A[i-1,j]

  end_for

end_for

• Turn outer-loop carried data reuse into inner-loop data reuse.

• Result: expose more opportunity for scalar replacement.
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More Load and Store Elimination

for j = 1, 2*M, 2

  for i = 1, N

    A[i, j] = A[i-1,j] + A[i-1,j-1]

    A[i, j+1] = A[i-1,j+1] + A[i-1,j]

  end_for

end_for

for j = 1, 2*M, 2

   t1 = A[0, j]

   t2 = A[0, j+1]

  for i = 1, N

    t0 = t1 + A[i-1, j-1]

    A[i, j] = t0

    t2 = t3 + t1

    A[i, j+1] = t2

    t3 = t2

    t1 = t0

  end_for

end_for

• Scalar replacement may introduce extra copying operations to

cover the reuse distance.

Benefits: reduced 3MN to MN

loads, but introduced extra moves.
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Rotating Registers

for i = 6, 100

  A[i] = A[i-5] + B[i]

end_for

Init t1,t2,t3,t4,t5

for i = 6, 100

   t0 = t5 + B[i]

   a[i] = t0

   t5 = t4; t4 = t3;

   t3 = t2; t2 = t1;

   t1 = t0

end_for

• Automatic register renaming

• Result: anti-dependence broken.

No explicit moves

.b1:

  (p16) ld4          r32 = [r3], 4

  (p18) add         r35 = r40,  r34

  (p19) st4          [r2] = r36, 4

br.ctop .b1 Explicit moves required
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Cache Optimizations

• Goal: hit the closest cache as much as possible.

• Reduce cache misses

– Capacity misses

– Conflict misses

– Cold misses

• Solutions

– Locality Optimization

– Explicit Memory Hierarchy Control
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Cache Locality Optimizations

for i = 1, 1000

  for j = 1, 1000

    for k = 1, 1000

      A[i, j, k] = A[i, j, k]  +  B[i, k, j]

    end_for

  end_for

end_for

for v = 1, 1000, 20

  for u = 1, 1000, 20

    for k = v, v+20

      for j = u, u+20

        for i = 1, 1000

          A[i, j, k] = A[i, j, k]

                          +  B[i, k, j]

        end_for

      end_for

    end_for

  end_for

end_for

• Reduce reuse distance with techniques like blocking, linear

transformations, fusion, distribution, data layout optimizations.

• Multi-level memory hierarchy hides memory latency, when

good data reuse.
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Cache Hints for Streaming Data

for i = 1, 1000

  for j = 1, 1000

    C[i] = C[i] + A[i, j]  *  B[j]

  end_for

end_for

for j = 1, 1000

  for i = 1, 1000

    t = A[i,j].nta

    C[i] =  C[i] + t * B[j]

  end_for

end_for

• Placement of data at desired level of the memory hierarchy,

using compile-time data reuse analysis.

• Result: avoid cache pollution with streaming data.

Allows high cache performance for multimedia applications.
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Overview: what is covered so far

• Procedure Inlining

• Interprocedural Analysis

• Code Placement

• Data Dependence Analysis for Speculation

• Eliminating Memory Operations

• Cache Optimizations

• Overlapping Memory Latency

• Parallelization and Vectorization

• Loop Unrolling for ILP

• Partial Redundancy Elimination



Hot Chips tutorial 1999

®

Compiler

Overlapping Memory Latency

• If the latency is long, start early.

• Use computation to overlap latency.

• Techniques

– Data Prefetching and Predication

– Control Speculation

– Data Speculation
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Prefetching Guidelines

• Avoid unnecessary prefetches - prefetch only refs that are

predicted to suffer cache misses

• Avoid ineffective prefetches - don’t prefetch too early or

too late

• Extra instructions - prefetch instructions + instructions that

generate the addresses

• Takes up memory slots - may increase II for a software-

pipelined loop

• May cause more stress on the memory and cache

subsystems
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Reuse Analysis

A

j

i

B
1

1 m

A(i,j) has spatial reuse

B(1,i+1) has temporal reuse

B(1,i) and B(1,i+1) have group reuse

for j = 1, n

  for i = 1, m

    A[i, j] = B[1, i] +  B[1, i+1]

  end_for

end_for
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Prefetch Predicates

• If an access has spatial locality, only the first access to the

same cache line will incur a miss - predicate is (i mod

line_size) = 0

• For temporal locality, only the first access will incur a

cache miss - predicate is i = 0

• If an access has group locality and is not the leading

reference, there is no cache miss

• If an access has no locality, it will miss in every iteration
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Example Code with Prefetches

A

j

i

B
1

1 m

for j = 1, n

  for i = 1, m

    A[i, j] = B[1, i] +  B[1, i+1]

    if (iand(i,7) == 0)

      prefetch (A(i+k,j))

    if (j == 1)

      prefetch (B(1,i+t))

  end_for

end_for

Assumed CLS = 8 words.

k and t are prefetch distance values
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Predication vs. Unroll

• In traditional architectures, having an if-condition in

the innermost loop is too expensive

• Loop splitting is performed to remove the conditionals

- unrolling, stripmining, or peeling; Problem: code

expansion

• In IA-64, predication can help

• If-statements converted into predicates
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Assembly Code with Predication

.b1_2:

  (p17) ldfd f32=[r8],8

  (p20) fma.d f38=f37,f1,f35

  (p17) and r38=7,r35

  (p26) lfetch [r37]

  (p17) add r34=1,r35 ;;

  (p17) cmp4.eq.unc p23,p24=r38,r0

  (p17) add r32=8,r33

  (p17) cmp.le p16,p0=r34,r3 ;;

  (p22) stfd [r2]=f40,8

  (p17) add r35=8,r36

  (p24) cmp4.eq.unc  p25,p0=1,r38

  (p23) lfetch [r33]  

  (p16) br.wtop.dptk .b1_2 ;;

for j = 1, n

  for i = 1, m

    C[i, j] = D[i-1, j] +  D[i+1, j]

    if (iand(i,7) == 0)

      prefetch (C(i+k,j))

    if (iand(i,7) == 1)

      prefetch (D(i+k+1,j))

  end_for

end_for
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Prefetch Hints

• 4 types of hints - T0, NT1, NT2, and NTA

• T0 - temporal locality at level 1

• NT1/NT2 - no temporal locality at level 1/2

• NTA - no temporal locality at all levels

• Can take advantage of these hints along with hints for

loads and stores to orchestrate data movement
across the cache hierarchy
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Data Prefetching

for i = 1, M

  for j = 1, N

    A[j, i] = B[0, j]  +  B[0, j+1]

  end_for

end_for

for i = 1, M

  for j = 1, N

    A[j, i] = B[0, j]  +  B[0, j+1]

    if (mod(j,8) == 0)

      lfetch.nt1(A[j+d, i])

    if (i == 1)

      lfetch.nt1(B[0, j+d])

  end_for

end_for

• Adding prefetching instructions using selective prefetching.

Reuse analysis for the best level in the hierarchy.

• Result: data is in cache, when used. Eliminated redundant

prefetches.

Predication eliminates the need

for extensive loop unrolling.

Cache hints.
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Parallelization and Vectorization

• High architecture bandwidth

• Vectorization

• Techniques

– Transformation for Parallel Instructions

– Transformation for Load Pairs

– Transformation for Parallelism/SWP
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Transformation for Parallel Instructions

for j = 1, 1000

  z[j] = x[j] + y[j]

end_for

• Vector operations. Traditional vectorization techniques apply

here.

• Result: multiple elements are processed in parallel.

for j = 1, 1000, 2

  z[j:j+1] = x[j:j+1] + y[j:j+1]

end_for
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Transformation for Load-pairs

for i = 1, 1000

  y[i] = y[i] + a*x[i]

end_for

IA-64 support for load-pair and early exit from

software pipelining.

• Loop unrolling for memory aligned paired loads. Data alignment

and loop remainder issues.

• Result: high bandwidth and reduced demand for memory issue

slots.

for i = 1, 1000, 2

  t1, t2 = ldfpd(x[i],x[i+1])

  t3, t4 = ldfpd(y[i],y[i+1])

  y[i] = t3 + a*t1

  y[i+1] = t4 + a*t2

end_for
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Transformation for Parallelism

for i = 1, M

  for j = 1, N

    A[i, j] = A[i, j-1] ...

  end_for

end_for

Increased parallelism for software pipelining.

• Loop transformation for fine-grained parallelism, e.g. software

pipelining and vectorization.

• Loop transformation for coarse-grained parallelism.

for j = 1, N

  for i = 1, M

    A[i, j] = A[i, j-1] ...

  end_for

end_for

Sequential loop Parallel loop
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Loop Unrolling for ILP

/* N = 2M */

for (i = 0; i<N; i++)

  a[i] = b[i];

  *p = ...

end_for

• Larger scheduling regions. Fewer dynamic branches.

• Code size may increase.

        t = ld.a N;

        for (i = 0; i<t/2; i=i+2)

          a[i] = b[i];

          *p = …

          t = ld.c  N

          a[i+1] = b[i+1];

          *p = …

          t = ld.c N

        end_for

IA-64 support for data

speculation.
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Partial Redundancy Elimination

 a  + b

 a=… a  + b r=a+b a=…

r=a+b

     r

• A computation is partially redundant if its result is

available on some paths.

• Remove partial redundancy by hoisting the  computation to

the not available path.
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Anticipability and Safety

• A computation is

anticipated at a statement

SS if it occurs on all the

paths from SS to the

program exit.

• Hoisting anticipated

computation is safe and

won’t increase any path

length.

 a / b

 a / b

!ant

 a / b

EXIT

 ant a =

!ant
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Control Speculation

• The load is only partially anticipated at Loop-entry.

• Speculatively hoist the load and propagate the speculative

value. Compensation after kill.

*p

p++

r = lds p

r=chk.s p

p++

r = lds p
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Injury and Data Speculation

• Ambiguous kill with low probability may be treated as an

injury to an available expression.

• A cheaper repair code (ld.c) is applied to the injured value.

  *p

 *q  =

  *p  r  =  l d . c  p

* q  =

 r  =  l d . a  p
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Combining Data/Control Speculation

• Control and data speculation are applied at the same time.

*p *q =

r = ld.sa p

r = chk.sa p *q = …
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Summary

• Part I: IA-64 Compiler Overview

• Part II: Compiler Optimizations on IA-64

– Procedure Inlining

– Interprocedural Analysis

– Code Placement

– Data Dependence Analysis for Speculation

– Eliminating Memory Operations

– Cache Optimizations

– Overlapping Memory Latency

– Parallelization and Vectorization

– Loop Unrolling for ILP

– Partial Redundancy Elimination


