Novel Multimedia Instruction Capabilities in VLIW Media Processors

> J. T. J. van Eijndhoven ^{1,2} F. W. Sijstermans ¹ ⁽¹⁾ Philips Research Eindhoven ⁽²⁾ Eindhoven University of Technology The Netherlands

> > eijndhvn@natlab.research.philips.com

Philips Research

PHILIPS

Contents

- Background
- Towards a new architecture
- Starting point
- Approach
- New features
- Example
- Conclusion

Background

- Philips Semiconductors has a TriMedia product line
- Featuring a VLIW processor core and on-chip peripherals
- Intended for Audio/Video media processing
- In consumer electronic devices

A next-generation VLIW core architecture was developed at Philips Research

TM1000 overview

TM1000 VLIW core

32 KB instr cache16 KB data cache,quasi dual ported,8-way set associative

128 words x 32 bits register file

5 ALU,	5 const,	2 shift,	3 branch
2 I/FPmul,	2 FPalu,	1 FPdivsqrt,	1 FPcomp
2 loadstore,	2 DSPalu,	2 DSPmul	
Pipelined, lat	ency 1 to 3 c	ycles (excep	t FPdivsqrt

Next generation architecture

Significantly improve VLIW processor performance by:

- Richer instruction set
- Wider data words
- Improved cache behavior
- Higher clock frequency

Approach

Quantitative design space exploration:

Machine description

CPU

```
ISSUESLOTS 5
                                                           Clib & O.S
      FUNCTIONAL UNITS
                                                           software
            alu SLOT 1 2 3 4 5 LATENCY 1
                                                 Machine
                                                           Retargetable
                                                 description
                                                                    Applicatio
                 OPERATIONS
                                                           C-compiler
                                                 file
                                                                    software
                        iadd(12), isub(13),
                                                          Cycle accurate
                                                           simulator
                        igtr(15), igeq(14),
           dspalu
                                   LATENCY 2
                  SLOT 1 3
                  OPERATIONS
                       dspiadd(66), dspuadd(67)
     REGISTERS r SIZE 32 NUMBER 128;
      READ BUSES REGISTERS r NUMBER 10;
OPERATIONS
      SIGNATURE (r:r,r->r) PURE iadd, isub,
      SIGNATURE (r:PAR,r->r) PARAMETER (0 to 127) PURE iaddi,
      SIGNATURE (r:r,r->r) LOADCLASS 1d32x,
```

Application Software

Applications used for design space exploration:

- MPEG2 decode, in particular IDCT
- Television progressive scan conversion: natural motion estimation & compensation
- 3D graphics library
- AC3 digital audio

Source code optimization towards architecture:

- analyse computation in critical sections: choice of algorithm
- vectorization of data and loops
- insertion of 'multimedia' machine operations
- provide compiler hints (*restrict* pointers, loop unrolling)
- Obtain recommendations for new 'multimedia' operations!

New Architecture

- Single registerfile of 128 words x 64 bits
- Maintain 5 issue slots
- Treat 64-bit words as vectors of 8-, 16-, or 32-bit data elements,
- Provide an extensive set of operations to support these vectors, as signed or unsiged data, clipped or wrap-around arithmetic.
- Provide a limited set of special operations to speed up particular applications

Introduction of a new capability: SuperOperations

SuperOperations

- A (2-slot) SuperOp can accommodate:
 - 4 argument registers
 - 2 result registers
- Its functional unit can thus implement a powerful operation.
- The SuperOp occupies 2 adjacent slots in the VLIW instruction format.
 - Fitting the basic instruction format: fixed fields for registers.
 - Fitting the available ports to the register file.
- Can be supported in the architecture with very little overhead.

SuperOperations in Hardware

- adjacent instruction slots
- regular decode (location of fields)
- existing register file ports

SuperOperations in Software

- SuperOps are available in C programs as procedure calls. (as all other multimedia and SIMD operations)
- The C compiler maps these to a single machine operation. (for dual-output this requires optimizing away the & operator)
- The instruction scheduler is aware of the (multi-) slot restrictions:
 - Slot assignment becomes more complex.
 (feasible shuffles of operations in a single instruction)
 - Register allocation requires some adjustment.

SuperOperation definition

Multimedia Software:

- MPEG
- Television
- 3D graphics
- audio

A complex design space optimization!

SuperOp examples (1)

vector multiplex: 1 result vector, 2 argument data vectors, a 3rd argument specifying a choice for each 16-bit element.

Transpose half-word high (and -low):

4 data argument vectors of 16-bit elements, 2 result vectors

SuperOp examples (2)

2-dimensional half-pixel average:

(otherwise 15)

Multiply to double precision:

(otherwise 2)

SuperOp examples (3)

 $\begin{array}{l} \mathsf{X'} = \mathsf{A}\mathsf{cos}(\alpha) \; \mathsf{X} + \mathsf{A}\mathsf{sin}(\alpha) \; \mathsf{Y} \\ \mathsf{Y'} = \mathsf{A}\mathsf{cos}(\alpha) \; \mathsf{Y} - \mathsf{A}\mathsf{sin}(\alpha) \; \mathsf{X} \end{array}$

Motion Compensation with SuperOps

Motion compensation from MPEG2, block of 16x8 pixels, with half-pixel accuracy (including loads and stores):

MotionComp [cycles]	No 2D-average superop	Have 2D-average superop
No funshift superop	82	39
Have funshift	70	31

The IDCT example

The IDCT is an important computational kernel in MPEG. The 2-dimensional 8x8 point IDCT was implemented in C, and compiled and simulated with the created tools. It operates entirely on (vectors of) 16-bit data elements. The generated code includes:

- The standard function-call stack mechanism.
- Initial load operations to get the data into the register file.
- Final write operations to store back the result.
- Immediates for multiplication constants.

Simulation on the target machine showed IEEE 1180 accuracy compliancy.

IDCT with SuperOps

2D-IDCT [cycles]	No rotate superop	Have rotate superop
Transpose without superop	60	47
Have transpose superop	56	43
No transpose, have special IDCT ops	46	37

The IDCT result

The current architecture reaches **56 cycles** (5-slot VLIW, 64 bit)

This is to be compared with:

- 201 cycles for the NEC V830R/AV⁽¹⁾ (2-way SS, 64-bit, 200MHz)
- 247 cycles for the TI TMS320C62⁽²⁾ (8-slot VLIW, 32-bit, 200MHz)
- 500 cycles for the Mitsubishi D30V⁽³⁾ (2-way SS, 32-bit, 200MHz)
- 147 for the HP PA-8000 with MAX-2⁽⁴⁾ (2-way SS, 64-bit, 240MHz)
- 160 cycles for the TM-1000 (5-slot VLIW, 32-bit, 100MHz)
- [500 for Pentium II with MMX, including dequantization stage⁽⁵⁾]

(But these are available now)

^{1]} K. Suzuki, T. Arai, et.al., V830R/AV: Embedded Multimedia Superscalar RISC processor, IEEE Micro, March 1998, pp. 36-47

^{2]} N. Seshan, High VelociTl Processing, IEEE Signal Processing Magazine, March 1998, pp.. 86-101

^{3]} E. Holmann, T. Yoshida, et.al., Single Chip Dual-Issue RISC Processor for Real-Time MPEG-2 Software Decoding, J. VLSI Signal proc., 18, 1998, 155-165

^{4]} R. Lee, Effectiveness of the MAX-2 Multimedia Extensions for PA-RISC 2.0 processors, HotChips IX symposium, Aug. 1997, pp. 135-148

^{5]} Intel, Pentium II Application note 886, 1997, http://developer/intel/com/drg/pentiumII/appnotes//886.htm

Conclusion

- An architecture has been defined for a new generation multimedia processor in the TriMedia product line.
 It was recently transferred to Philips Semiconductors for physical design. (More details are announced at Microprocessor Forum '98)
- SuperOperations, occupying multiple adjacent slots in the VLIW instruction, are added as new concept. For specific occasions, they allow considerable speedup with limited architectural consequences.
- A retargetable C-compiler, instruction-scheduler and simulator are used to tune the architecture and quantify application results.