A Single Chip DTV Media Processor

HOTCHIP -1998

DTV

chitecture

Selliah Rathnam

Philips Semiconductors

Trimedia - DTV

TriMedia DTV Architecture V1.0a.ppt 1 August 1998

Philips Semiconductors

Pro

Let's make things better.

TELEVISION

- **Trimedia Chip Generations**
- System Block Diagram
- Internal blocks
- VLIW based CPU
- MPEG-Pipe
- **Memory System** •
- **Analog Video Improvements** •
- Summary

TriMedia DTV Architecture V1.0a.ppt 2 August 1998

Philips Semiconductors

Content

CI 64 P 2 3 3 3 **Trimedia CPU Generations TM-1000: 100 MHz VLIW CPU** - Co-processors: VLD, ICP - Silicon Status: In production TM-1100: 133MHz VLIW CPU – New Co-processor/Bus: DVD de-scrambler/PCI-XIO -CPU Enhancement: six new operations to enhance **CPU** power -Silicon Status: Sampling now

TriMedia DTV Architecture V1.0a.ppt 3 August 1998

Let's make things better.

odel 64PP9901 **Trimedia CPU Generations** (Cont'd) TM-2 (DTV): Single chip DTV media processor -Major new/modified Co-processors: Slice-level MPEG2 video decoder High definition video display pipe (HDVO) -Concurrent SPDIF audio output -64-bit memory interface

TriMedia DTV Architecture V1.0a.ppt 4 August 1998

Philips Semiconductors

Model 64PP9901

Televant

+ 64" Widescreen Displa

Doby Digital Sound

+ Fully ATSC Compliant

- a End House Theorem Con
- Transport Demux
- MP@HL all 18 resolution video decoding
- AC-3 or MPEG audio decoding —AC-3 5.1ch@384Kbps and 2ch@192Kbs
- 2D,3D graphics generation (GUI, browser, ...)
- Display chain (scaling H&V, alpha blending, chroma keying, de-interlacing)

Key DTV Set Functions

- PIP, Closed Caption decode
- Modem

TriMedia DTV Architecture V1.0a.ppt 5 August 1998

Let's make things better.

Model 64PP9901

Television

+ 64" Widescreen Displa

Doby Digital Sound

Fully ATSC Compliant

· Convenient Side Conve

Optional DTV Functions

- Decode discretionary format (Datacasting etc.)
- Improved rendering of NTSC (Natural motion etc.)
- Browser and push content display
- Video conferencing (with external camera)
- Mid performance 3D (VRML, games)

TriMedia DTV Architecture V1.0a.ppt 6 August 1998

Defining the ATSC Standard

Doby Digital See

Fully ATSC Compile

Convenient Side Conve

ATSC specification optional standards for DTV

All 18 formats refer to input and output configurations

Philips Semiconductors

1999 DTV System Block Diagram

+ Duby Digital Sound

Fully ATSC Compliant

Convenient Side Conve

Full Home Theatre Cor

CPU Functional Units

Functional Unit	Quantity	Latency	Recovery Time
constant	5	1 Lantine	1
integer ALU	5	21	1
load/store	2	3	1
DSP ALU	2	2	1
DSP MUL	2	3	1
shifter	2	- 1	1
branch	3	3	1
int/float mul	2	3 2	1
float ALU	2	3	1
float compare	1	1	1
float sqrt/div	1	17	16

TriMedia DTV Architecture V1.0a.ppt 10 August 1998

Let's make things better.

Key Features of TM2 based DTV System

Audio Output

-6-ch main audio; 2-ch stereo for VCR; 2-ch stereo for PIP audio;

- 20-bit Dolby digital compliance
 - -Concurrent SPDIF output of main audio
- Audio Input

-Two audio ports (IIS interface); receives PCM or SPDIF data through external glue logic

TriMedia DTV Architecture V1.0a.ppt 12 August 1998

Key Features of TM2 based DTV System (Cont'd)

Convenient Side Conven
 Full Harne Theatre Core

- Video-In
 - Two video-in units in order to receive two NTSC channels
- Transport Stream Input Unit

 PID filtering in HW in order to reduce the CPU load for the ATSC demux function

- Remaining demux functions are implemented in software
- Shares the video-in pins
- Two transport stream input units

TriMedia DTV Architecture V1.0a.ppt 13 August 1998

Model 64PP9901

Key Features of TM2 based DTV System (Cont'd)

Duby Digital Sound

- Fully ATSC Compliant
- Convenient Side Com
 E. Il Monto Theorem Co
- Video Out
 - -High Definition Video out rgb 10-bit each
 - HD capable: 1920X1080 @ I60 fields/Sec or P30 frames/Sec, 74 Mpixels/Sec
 - Arbitrary Hor. And Vertical scaling,
 - PIP window, VCR output of main video
 - Graphics overlay
 - Aspect ratio conversion, interlacing, de-interlacing
 - -Standard definition video-out in CCIR 656 format
 - Used for VCR recording

TriMedia DTV Architecture V1.0a.ppt 14 August 1998

Let's make things better.

Key Features of TM2 based DTV System (Cont'd)

Convenient Side Conve

- MPEG2 co-processor for slice-level decoder
 - -Capable of decoding MP@HL video bitstream

-2:1 compression mode in order to save memory

Error concealment in order to re-construct the region of image lost due to bitstream errors

TriMedia DTV Architecture V1.0a.ppt 15 August 1998

Philips Semiconductors

Key Features of TM2 based DTV System (Cont'd)

Memory/Hwy

- -64-bit main memory interface
- -64-bit Hwy for MPEG2 and HDVO; 32-bit highway for the remaining units
 - -2D read/write from MPEG2 co-processor
 - -Supports 4Mbytes to 64 Mbytes of main SDRAM memory

TriMedia DTV Architecture V1.0a.ppt 16 August 1998

NTSC Movie

Doby Digital Sound

· Party Albie Company

. Full Home Theatre Cor

- Fifty percent of Program content originates from movie
- Movie frame rate is 24 frames/sec (48 field/sec)
 - -NTSC is 60 fields/sec
- One field is repeated for every four fields in order to show a movie in NTSC TV
 - –Field repetition causes jerkiness in the objects in motion (= Eye strain)

TriMedia DTV Architecture V1.0a.ppt 19 August 1998

Let's make things better.

NTSC Movie Display Improvements

Doby Digital scole

- + Commission Side Conne
- + Full Home Theatre Co
- Natural motion algorithm has been developed in order to generate new (in-between) frames
 - 24 frames/sec => 60 frames/sec or 60 fields/sec

- The result is a smooth motion while watching movies

- Natural motion algorithm will run in TM-2 CPU
- The SD resolution movie will be optionally scaled to HD display using high quality Hor. And vertical polyphase filters

TriMedia DTV Architecture V1.0a.ppt 20 August 1998

Let's make things better.

Summary

+ E-I- ATSC Complian

+ Convenient Side Com

- . Full Home Theatre Cor
- TM2000: high performance DTV media processing chip
 - -Includes MP@HL video decode

InMed

- Status: Silicon will be sampled in 4Q 1998
- Project Experience:
 - Display processing consumes a significant amount of chip area
 - It is an exiting experience to work with HD video and AC-3 audio based DTV project

TriMedia DTV Architecture V1.0a.ppt 21 August 1998

Let's make things better.

Thank you Selliah Rathnam PHILIPS

TriMedia DTV Architecture V1.0a.ppt 22 August 1998

Philips **Semiconductors**

